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A B S T R A C T

Sensor–cloud has gained increasingly popularity since it bridges the physical world and the cyber world
through pervasive computation. This paper focuses on secure and verifiable 𝑘 nearest neighbor (𝑘NN) queries
over large-scale outsourced datasets in sensor–cloud systems. Existing work in this line often incurred high
computational and communication overheads, remaining far away from practical and scalable. To this end,
we propose SecVKQ, a two-phase search framework, which mainly includes a preliminary screening phase and
an exact search phase. SecVKQ purposely takes advantage of secure data separation and adaptive encryption
strategy, embracing edge servers into the classic dual-cloud model, so as to optimize query performance. Under
SecVKQ, we design a series of secure protocols and develop a succinct verification strategy to derive a unified
solution. The experimental results demonstrate the effectiveness of SecVKQ. Compared to the state-of-the-
art work, SecVKQ achieves a speed-up of two orders of magnitude in search latency, and a savings of 50%
communication cost for verification.
1. Introduction

In recent years, sensor–cloud as the product of combining wireless
sensor networks and cloud computing has received extensive attention
from both academia and industry [1–3]. In addition to servers and
people, sensors are important components of sensor–cloud systems.
People can get relevant information (e.g., location, temperature and
humidity) through different sensors [4]. With the rapid advances in
mobile communications, location-based services (LBSs) are emerging
as the next killer application in sensor–cloud systems. An LBS allows
a mobile user to query an LBS provider, through location-aware sen-
sors anytime and anywhere, in order to retrieve detailed information
(e.g., position, ranking and photos) about points of interest (POIs) in
her vicinity [5,6].

Among various LBS applications in sensor–cloud systems, 𝑘 nearest
neighbor (𝑘NN) queries that allow a mobile user to obtain the top-𝑘
POIs with the shortest distance between her current position reach the
top of popularity. For example, user Alice sitting at Starbucks is seeking
for the closest restaurant. Mobile users will query LBS providers in a
ubiquitous manner. To improve user experiences, LBS providers may
deploy geographically distributed servers (referred to as edge servers)
across a large area, so that mobile users can get fast responses no matter
where they are [7–10].
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However, the extensive popularization of LBS applications renders
the explosive growth of location-related data. The data volume is
expanding so fast that LBS providers could hardly keep up with the
requirement. Hence, it is a promising choice for LBS providers to out-
source their data to cloud service providers (CSP) for enhanced services
and cost savings [11,12]. For example, the popular LBS providers,
Foursquare and Yelp, outsourced their entire datasets to Amazon Web
Services. On the other hand, outsourcing data to cloud service providers
raises both data security and confidentiality issues [13–17].

Let us consider the following application scenario as shown in
Fig. 1. The LBS provider outsources dataset  to the CSP, which is
delegated to provide various location-based services to mobile users.
As a typical example of 𝑘NN queries, Alice submits her location 
together with parameter 𝑘 = 3 to the cloud server, which then finds out
and returns the detailed information about the top-3 nearest POIs by
comparing the distances between location  and nearby POIs’ positions.
The following requirements are essential to this scenario: (1) Security.
The CSP is not fully trusted and may leak sensitive data inadvertently
or intentionally. For instance, the recent news about Amazon S3 di-
vulging personal medical information. The dataset  or the mobile
user’s locations/trajectories are of high commercial value and related to
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Fig. 1. Application scenario, where  = {1 ,… ,8}.  ′
2 is an unregistered restaurant

outside  and 8 is a remote restaurant.

privacy. Therefore, the contents of both dataset  and query  need to
be preserved against the CSP. (2) Verifiability. The CSP may deliberately
falsify search results for business benefit. For example, the CSP forges
the search result as {𝑃1, 𝑃 ′

2 , 𝑃8}, when the truly top-3 nearest POIs are
{𝑃1, 𝑃2, 𝑃3}. Therefore, the mobile user should have the ability to verify
the search results in the aspects of authenticity (i.e., the POIs returned
indeed are from the dataset ) and completeness (i.e., no POIs satisfying
the query condition are omitted).

Most of the existing work addressed the problem of security and
proposed a number of secure 𝑘NN search schemes based on crypto-
graphic methods with support for comparisons over ciphertexts. Gen-
erally speaking, the LBS provider encrypts the dataset before out-
sourcing so that the mobile user issues encrypted queries to retrieve
encrypted POIs. According to the adopted encryption solutions, the
secure 𝑘NN search schemes can be classified into efficiency-first (EF)
schemes and security-first (SF) schemes. The EF schemes [18–22] em-
ploy light-weighted cryptography, such as order-preserving encryption
(OPE) [23] or distance-recoverable encryption (DRE) [18], to support
efficient 𝑘NN queries over encrypted data. The main drawback of
EF schemes is that OPE and DRE are vulnerable to inference attacks
and thus provide only a weak security guarantee [24,25]. The SF
schemes [26–28] apply homomorphic encryption, Paillier into the dual-
cloud model [26] for enhanced security. However, the SF schemes
are impractical to large datasets because of the high computational
overhead of homomorphic encryption.

Until now, little work [28–30] has been done in achieving security
and verifiability simultaneously. As the state-of-the-art work in this
field, Cui et al. [28] proposed the SVkNN scheme, which unified SF
schemes with result integrity. The SVkNN scheme builds grid-based
index to improve query performance, but its search complexity is linear
to the size of datasets, thus lacking scalability. For example, SVkNN
needs around 1 hour on average while performing 10NN queries on a
dataset of 100,000 POIs. The LBS dataset usually contains hundreds of
thousands or even millions of POIs. Therefore, how to efficiently achieve
secure and verifiable 𝑘NN queries on large-scale dataset is still an open
problem.

To solve this problem, we propose a comprehensive search frame-
work, SecVKQ, where the search process is divided into the preliminary
screening phase performed on edge servers and the exact search phase
performed on two collude-resistant clouds. The dual-cloud model has
been widely applied in secure kNN search schemes, since it was pro-
posed in [26]. Existing work [27,28] assumed that two clouds will
not collude in the search phase. We believe that this assumption is
reasonable since two clouds of different interests are usually commer-
cial competitors. For example, two clouds may be Google and Amazon,
which are highly improbable to conspire with each other.

The most notable feature of SecVKQ is the integration of edge
servers into the classic dual-cloud model, enabling the search complex-
ity on the cloud side to be relevant to the size of preliminary results.
2

Instead of a simple composition, SecVKQ takes advantage of clouds and
edges to optimize query efficiency by utilizing secure data separation
and adaptive encryption strategy. On the high level, the edge servers
are responsible for evaluating a query coverage over an R-tree index
built from the dataset to obtain preliminary results, in contrast, the
cloud servers process exact positions of POIs and users to perform
exact 𝑘NN queries. In terms of privacy levels, the R-tree index (resp.
the query coverage) contains less sensitive information compared to
the POIs’ positions (resp. mobile users’ exact positions). Hence, the
light-weighted comparable inner product encoding (CIPE) scheme and
the expensive homomorphic encryption are adopted in the preliminary
screening phase and the exact search phase, respectively.

Under SecVKQ, we design a series of secure protocols to facil-
itate secure 𝑘NN searches over large-scale datasets and develop a
compact verification strategy based on Voronoi diagram [31] and
condensed RSA signature [32]. The main contributions of this paper
are summarized as follows:

• We design a comprehensive search framework, SecVKQ, to
achieve secure and verifiable 𝑘NN queries on sensor datasets.
SecVKQ utilizes secure data separation and adaptive encryption
strategy to take full advantage of clouds and edges in optimizing
query efficiency.

• We utilize the Voronoi diagram for verification and propose a
series of secure protocols and optimization techniques to improve
the query performance further.

• We provide rigorous security analysis and evaluate the perfor-
mance of SecVKQ on two real-world datasets to show its effec-
tiveness. Experimental results demonstrate that SecVKQ achieves
a speedup of two orders of magnitude in search latency compared
to the state-of-the-art scheme. At best, it needs only around 10
seconds on average while performing secure and verifiable 10NN
queries on a dataset of 100,000 POIs.

2. Preliminary

2.1. Voronoi diagram

Suppose that the dataset consists of 𝑛 data points,  = {1,… ,𝑛},
where each data point denotes a POI. The Voronoi diagram partitions
the space into 𝑛 disjoint regions, where each region contains exactly
one data point. The region where data point 𝑖 is located is called
𝑖’s Voronoi cell, denoted by (𝑖), and two data points 𝑖 and 𝑗
are Voronoi neighbors if (𝑖) and (𝑗 ) share a common edge.
The set of Voronoi neighbors of data point 𝑖 is denoted by  (𝑖).
Let  = (𝑖, (𝑖))𝑖∈[𝑛] denote the Voronoi diagram built from the
dataset .  has two properties that are useful for the verification of
𝑘NN queries [31]:

Property 1. Given a query point , the nearest neighbor of  is data point
 , if  ∈ ().

Property 2. If data points 1,… ,𝑘 are the 𝑘(𝑘 > 1) nearest neighbors
of the query point , then 𝑖 belongs to  (1) ∪ ⋯ ∪  (𝑖−1), for
𝑖 = 2,… , 𝑘.

For example, given a dataset  that contains 8 data points as shown
in Fig. 2-(b), the Voronoi diagram is shown in Fig. 2-(a). The Voronoi
neighbors of data point 4 include  (4) = {2,3,5} since (4)
shares a common edge with (𝑖) for 𝑖 ∈ {2, 3, 5}. In this example, the
search result of a 3NN query is  = { , , }.
4 5 3
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Fig. 2. An example of Voronoi diagram.

2.2. Paillier cryptosystem

The Paillier cryptosystem is a probabilistic asymmetric encryption
scheme with the additive homomorphic property [33]. Let 𝐸 denote the
encryption algorithm under public key 𝑝𝑘𝑝, let 𝐷 denote the decryption
algorithm under secret key 𝑠𝑘𝑝, and let 𝑁 denote the product of two
large primes. Given two plaintexts 𝑥1, 𝑥2 ∈ Z𝑁 , Paillier cryptosystem
has following additive homomorphic property:

𝐷(𝐸(𝑥1) × 𝐸(𝑥2) mod 𝑁2) = 𝑥1 + 𝑥2
𝐷(𝐸(𝑥1)𝑥2 mod 𝑁2) = 𝑥1 × 𝑥2
Paillier cryptosystem achieves semantic security [34] and will be used
to encrypt the exact positions of data/query points.

2.3. Secure protocols in dual-cloud model

Secure Squared Euclidean Distance (SSED) [26]. Given two cloud
servers, 𝐂1 and 𝐂2, SSED allows to securely compute the encrypted
squared Euclidean distance of two encrypted points. Specifically, 𝐂1
takes the encrypted points (𝐸(1), 𝐸(2)) as input and 𝐂2 takes the
secret key 𝑠𝑘𝑝 as input. At the end of this protocol, 𝐂1 obtains 𝐸(▵
(1,2)), where ▵ (1,2) denotes the squared Euclidean distance
between 1 and 2.

Secure Comparison (SC) [35]. Given two cloud servers, 𝐂1 and 𝐂2,
SC allows to securely compare two encrypted integers. Specifically, 𝐂1
takes the encrypted integers (𝐸(𝑥1), 𝐸(𝑥2)) as input, and 𝐂2 takes the
secret key 𝑠𝑘𝑝 as input. At the end of this protocol, 𝐂1 obtains 𝐸(𝑥min),
where 𝑥min = min(𝑥1, 𝑥2).

2.4. Comparable inner product encoding

The CIPE scheme [36] consists of the following algorithms:
∙ 𝖦𝖾𝗇𝖪(1𝜅 ) → 𝑠𝑘𝑐 ∶ This algorithm takes a security parameter 𝜅 as

input and outputs a secret key 𝑠𝑘𝑐 .
∙ 𝖤𝗇𝖼𝖣(𝑥, 𝑠𝑘𝑐 ) → 𝑥 ∶ This algorithm takes a plaintext 𝑥 and the secret

key 𝑠𝑘𝑐 as input and outputs the ciphertext 𝑥.
∙ 𝖤𝗇𝖼𝖰(, 𝑠𝑘𝑐 ) → ̂ ∶ This algorithm takes a query coverage

 = [𝑏𝑙 , 𝑏𝑢] and the secret key 𝑠𝑘𝑐 as input and outputs the encrypted
range ̂.

∙ 𝖢𝗈𝗆𝗉𝖺𝗋𝖾(𝑥, ̂) → {0, 1} ∶ Given the encrypted query range ̂ and
the encrypted value 𝑥, this algorithm outputs −1 if 𝑥 < 𝑏𝑙 and outputs
1 if 𝑥 > 𝑏𝑢. Otherwise, it outputs 0.

The CIPE scheme allows edges to decide whether a value 𝑥 falls
in a query range  or not based on their ciphertexts. The reason for
the adoption of the CIPE scheme in the preliminary screening phase
is that it not only can compete with OPE schemes in the aspect of
search efficiency, but also can resist some attacks that OPE schemes
are vulnerable to. For instance, the CIPE scheme can resist inference
attacks by expanding the query matrix with noises [36].
3

Fig. 3. System model. Secret keys are transmitted through secure channels.

2.5. Condensed RSA signature

Due to the property of multiplicative homomorphism, RSA signature
scheme can be used to combine many signatures into one condensed
signature [30]. Suppose that 𝑁 ′ is a product of two large random
primes and that 𝑒 × 𝑑 = 1 mod 𝜙(𝑁 ′), where 𝑒, 𝑑 ∈ Z∗

𝑁 ′ . For the
standard RSA signature scheme [32], there are private key 𝑠𝑘𝑟 = 𝑑 and
public key 𝑝𝑘𝑟 = (𝑁 ′, 𝑒). We can compute the RSA signature 𝜎 = ℎ(𝑚)𝑑

mod 𝑁 ′, where 𝑚 is the message and ℎ() is a hash function. Then we
can verify the signature 𝜎 by checking if 𝜎𝑒 = ℎ(𝑚) mod 𝑁 ′.

The condensed signature is computed by modular multiplying the
original signatures. Suppose that 𝑚1, 𝑚2,… , 𝑚𝑘 are 𝑘 different messages,
whose original RSA signatures are 𝜎1, 𝜎2,… , 𝜎𝑘, respectively. We can
compute the condensed signature: 𝜎1,𝑘 = (

∏𝑘
𝑖=1 𝜎𝑖) mod 𝑁 ′. Then

we can verify the condensed signature 𝜎1,𝑘 by checking if: 𝜎𝑒1,𝑘 =
(
∏𝑘

𝑖=1 ℎ(𝑚𝑖)) mod 𝑁 ′. The length of the condensed signature is equal
to that of the original signature. Thus, the condensed RSA signature
scheme can be used to reduce the communication cost.

3. Overview

3.1. System model

As illustrated in Fig. 3, our system model consists of the following
entities.

∙ LBS Provider. As the data owner, the LBS provider wishes to
outsource dataset  to the cloud to save money. To enable secure
and verifiable 𝑘NN queries on large-scale datasets, the LBS provider
performs secure data separation and adaptive encryption strategy in the
data preprocessing stage. For highly private data, it builds a Voronoi
diagram  from , encrypts  with the Paillier cryptosystem, and
signs  with the condensed RSA signature. The pretreated Voronoi
diagram ̂ and the secret key 𝑠𝑘𝑝 are sent to cloud servers 𝐂1 and 𝐂2,
respectively. For less sensitive data, the LBS provider builds an R-tree
index 𝑅 from , and encrypts 𝑅 with the CIPE scheme. The encrypted
index ̂𝑅 is uploaded to appropriate edge servers to speed up the query
process.

∙ Mobile Users. After obtaining authorization from the LBS provider,
the mobile user can issue 𝑘NN queries to retrieve POIs in her vicinity.
The mobile user located at position  issues a search token   =
(R̂ect, 𝑘, 𝐸()) to the nearby edge server, where R̂ect is a two-
dimensional range query encrypted under the CIPE scheme, and 𝐸()
is her exact position encrypted under the Paillier cryptosystem. Once
she receives an encrypted search result ̂ and a verification object
 from the cloud server, she recovers the plaintext result  and
validates the correctness of  with .

∙ Edge Servers. The edge servers possessed by the LBS provider
are deployed over geographically distributed areas. Each edge server
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Table 1
Summary of Notations.

 A spatial dataset that includes 𝑛 points {1 ,… ,𝑛}

𝑖 , 𝐸(𝑖) A POI point with (𝑥𝑖 , 𝑦𝑖) and its encrypted coordinates

, 𝐸() A query point with (𝑥𝑞 , 𝑦𝑞 ) and its encrypted coordinates

▵ (𝑖 ,) The squared Euclidean distance between 𝑖 and 

𝑠𝑘𝑐 The secret key for CIPE scheme

𝑠𝑘𝑝 , 𝑝𝑘𝑝 The secret/public key for Paillier cryptosystem

𝑠𝑘𝑟 , 𝑝𝑘𝑟 The secret/public key for RSA signature

̂𝑅 , 𝑅 The encrypted/clear R-tree index built from 

̂, The pretreated and clear Voronoi diagram built from 

R̂ect ,Rect The encrypted/clear range query generated for 

  The search token consisted of (R̂ect , 𝑘, 𝐸())

 The immediate result in the preliminary screening phase

̂, The encrypted/clear result in the exact search phase

 The verification object consisted of (𝑔𝑒𝑜 ,𝑠𝑖𝑔 )

𝜎𝑖 The RSA signature for the information about (𝑖 , (𝑖))

𝜎1,𝑘 The condensed RSA signature for 𝑘 signatures {𝜎1 ,… , 𝜎𝑘}

is responsible for preliminarily processing the 𝑘NN queries of nearby
mobile users. Given the encrypted search token   = (R̂ect, 𝑘, 𝐸()),
t evaluates R̂ect over the encrypted R-tree index ̂𝑅 to filter out the

immediate result , and then sends  and a part of search token
(𝑘, 𝐸()) to the cloud server 𝐂1.

∙ Dual-Cloud Servers. Two cloud servers interact with each other
without colluding in the exact search phase. At the high level, 𝐂1

ith the pretreated Voronoi diagram ̂, the immediate result ,
nd the partial search token (𝑘, 𝐸()), and 𝐂2 with the secret key
𝑘𝑝, collaboratively execute a series of secure protocols to obtain an
ncrypted search result ̂. Finally, the verification object  together
ith ̂ are returned to the mobile user for verification.

.2. Adversary model

In our threat model, the LBS provider and mobile users are fully
rusted. The cloud servers are called active attackers, that may not only
ry to learn additional information outside their permissions, but also
eturn incorrect results for financial gain. In the dual-cloud model, two
loud servers belonging to different CSPs are assumed not to collude
ased on existing work [26–28]. Edge servers possessed by the LBS
rovider are called passive attackers, which may accidentally leak data
ue to external attacks. To ensure secure and verifiable 𝑘NN queries,
ur security goals try to preserve the following:
∙ Data Privacy. The content of dataset  should be protected against

ttackers.
∙ Index Privacy. The content of the search index should be protected

gainst attackers.
∙ Query Privacy. The contents of queries and results of mobile users

hould be protected against attackers.
∙ Result Correctness. The mobile user is able to verify the correctness

f the search result from the aspects of authenticity and completeness
n an efficient way.

.3. Notations and definitions

We write notations [𝑥] and [𝑥 ∼ 𝑦] to represent the set of integers in
{1,… , 𝑥} and {𝑥,… , 𝑦}, respectively. The cardinality of set 𝑆 is denoted
by |𝑆|. The concatenation of two strings 𝑠1 and 𝑠2 is denoted by 𝑠1|𝑠2.
The most relevant notations are shown in Table 1.

Let  = {1,… ,𝑛} be a spatial dataset, where each data point
𝑖 is represented as a spatial coordinate (𝑥𝑖, 𝑦𝑖). The exact position of
4

each query point  is also represented as a spatial coordinate (𝑥𝑞 , 𝑦𝑞).
Let ▵ (𝑖,) denote the squared Euclidean distance between 𝑖 and ,
nd let ̂ and  denote the encrypted and plaintext search results,
espectively.

efinition 1 (Secure and Verifiable 𝑘NN Query). Given encrypted in-
dexes (̂𝑅, ̂) built from the dataset , a search token   generated
or the query point , and parameter 𝑘, the secure and verifiable 𝑘NN
uery aims to find out the encrypted search result ̂, s.t. (1)  ⊆ ;
2) ▵ (𝑖,) ≤▵ (𝑗 ,), ∀𝑖 ∈  ∧ ∀𝑗 ∈  −  while preserving
ata privacy, index privacy, and query privacy.

From the system point of view, the workflow of SecVKQ is shown
n Fig. 4. In the initial phase, the LBS provider firstly runs the GenKey
lgorithm to generate related secret keys (𝑠𝑘𝑐 , 𝑠𝑘𝑝, 𝑝𝑘𝑟) and 𝑠𝑘𝑝, which
ill be sent to mobile users and the dual-cloud servers, respectively.
iven an R-tree 𝑅 and a Voronoi diagram  constructed from

he dataset , the LBS provider then runs the EncTree algorithm to
enerate the encrypted R-tree ̂𝑅 for edge servers, and runs the PreVD
lgorithm to generate the pretreated Voronoi diagram ̂ for the dual-
loud servers. In the search phase, given an exact query point  and a
ange Rect𝑄, the mobile user encrypts  with homomorphic encryption,
nd runs the EncRect algorithm to generate an encrypted range query
êctQ, and then sends the search token (R̂ectQ, 𝑘, 𝐸(𝑄) to the nearby
dge server. The edge server runs the SearchTree algorithm to generate
he immediate result , then sends , and partial search token
𝑘, 𝐸()) to the dual-cloud servers. The dual-cloud servers run the SEKS
rotocol to generate the encrypted result ̂ and the verification object
, and then send (̂,) to the mobile user. In the verify phase, the
obile user firstly decrypts (̂,), then verifies the decrypted result
 according to the verification object .

. Preliminary screening phase

.1. Main idea

To allow secure and efficient filtering, the LBS provider builds an
-tree [37] index 𝑅 from the dataset , encrypts each tree node with

he 𝖢𝖨𝖯𝖤.𝖤𝗇𝖼𝖣 algorithm, and uploads the encrypted R-tree index ̂𝑅
o edge servers. In order to retrieve the top-𝑘 nearest POIs, the mobile

user located at position  = (𝑥𝑞 , 𝑦𝑞) generates a two-dimensional range
query Rect, encrypts each dimension with the 𝖢𝖨𝖯𝖤.𝖤𝗇𝖼𝖰 algorithm,
and sends the encrypted range query R̂ect to the nearby edge server.
Once receiving a query request, the edge server evaluates the encrypted
query R̂ect over the encrypted index ̂𝑅 to obtain an intermediate
result , with which the cloud servers can quickly find out the exact
search results.

R-tree structure. The basic idea of building an R-tree is to group
nearby POIs at the same level and iteratively include them to a minimal
bounding box in a higher level of the tree [37]. Specifically, each leaf
node 𝑣 ∈ 𝑅 is defined by 𝑣 = ⟨ID𝑣,𝑖⟩, where ID𝑣 is the unique
identifier of node 𝑣 in the tree 𝑅, and 𝑖 ∈  is a distinct POI
associated with node 𝑣. In contrast, each non-leaf node 𝑢 ∈ 𝑅 is defined
by 𝑢 = ⟨ID𝑢,Rect𝑢, child1,… , child𝑓 ⟩, where ID𝑢 is node 𝑢’s identifier,
Rect𝑢 is the rectangle associated with node 𝑢, and child1,… , child𝑓 are
the pointers to each of 𝑢’s children. For example, Fig. 5 illustrates an
R-tree with fanout 𝑓 = 3 that is built from dataset  = {1,… ,8},
where the rectangles with solid lines denote non-leaf nodes of the index
tree 𝑅.

Two-dimensional range query. Suppose that the mobile user lo-
cated at  = (𝑥𝑞 , 𝑦𝑞) wants to issue a range query with scope 𝐿. She
generates a rectangle Rect by taking  as the center and 𝐿 as the
edge length. For example, in Fig. 5, the rectangle with red dashed lines
denotes range query .

Secure range query on an encrypted R-tree. In clear text, the
search process is a recursive procedure upon the index tree 𝑅. Given
a range query Rect , the edge server performs a detection starting

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Fig. 4. System flow diagram.
Fig. 5. An example of the construction/searching of an R-tree.
Protocol 1 Preliminary Screening Phase
Calculation in LBS provider

1: Run the GenKey algorithm to generate a secret key 𝑆𝐾
2: Construct an R-tree 𝑅 from dataset 
3: Run the EncTree algorithm to generate an encrypted R-tree ̂𝑅

Calculation in mobile user
4: Express the range query as a rectangle RectQ
5: Run the EncRect algorithm to generate an encrypted query R̂ectQ

Calculation in edge server
6: Run the SearchTree algorithm to obtain the immediate result 

from the root node of tree 𝑅. If Rect𝑢, the rectangle associated with
node 𝑢, overlaps with Rect, node 𝑢’s children nodes will be checked;
otherwise, the subtree rooted at node 𝑢 will not be traversed. When
this traversal is over, all of the reached leaf nodes are returned. For
example, Fig. 5 illustrates the query process over a sample R-tree.

In order to apply the CIPE scheme, Rect𝑢 is represented by the coor-
dinates of its left-bottom point (𝑥𝑢1 , 𝑦𝑢1 ) and the coordinates of its right-
top point (𝑥𝑢2 , 𝑦𝑢2 ). For each value in Rect𝑢, the 𝖢𝖨𝖯𝖤.𝖤𝗇𝖼𝖣 algorithm is
run to generate an encrypted rectangle R̂ect𝑢 = ((𝑥𝑢1 , 𝑦𝑢1 ), (𝑥𝑢2 , 𝑦𝑢2 )). Let
(𝑥𝑞1 , 𝑦𝑞1 ) and (𝑥𝑞2 , 𝑦𝑞2 ) denote the coordinates of the left-bottom point
and right-top point of Rect. In contrast, Rect𝑄 is represented by the
query coverage on the 𝑥-coordinate 𝑥 = (𝑥𝑞1 , 𝑥𝑞2 ) and the query
coverage on the 𝑦-coordinate 𝑦 = (𝑦𝑞1 , 𝑦𝑞2 ). For each query coverage
in Rect, the 𝖢𝖨𝖯𝖤.𝖤𝗇𝖼𝖰 algorithm is run to generate an encrypted
rectangle R̂ect = (̂𝑥, ̂𝑦). Rect does not overlap with Rect𝑢, if
either of the following cases happen:

∙ Case 1: 𝖢𝖨𝖯𝖤.𝖢𝗈𝗆𝗉𝖺𝗋𝖾(𝑥𝑢1 , ̂𝑦) = 1
∙ Case 2: 𝖢𝖨𝖯𝖤.𝖢𝗈𝗆𝗉𝖺𝗋𝖾(𝑥𝑢2 , ̂𝑥) = −1
∙ Case 3: 𝖢𝖨𝖯𝖤.𝖢𝗈𝗆𝗉𝖺𝗋𝖾(𝑦𝑢1 , ̂𝑦) = 1
∙ Case 4: 𝖢𝖨𝖯𝖤.𝖢𝗈𝗆𝗉𝖺𝗋𝖾(𝑦 , ̂ ) = −1
5

𝑢2 𝑦
4.2. Details of the working process

Let 𝐹 ∶ {0, 1}𝜅 × {0, 1}∗ → {0, 1}𝜅 be a pseudo-random function
(PRF). As shown in Protocol 1, the preliminary screening phase consists
of the following algorithms:

∙ 𝖦𝖾𝗇𝖪𝖾𝗒(1𝜅 ,) → 𝑆𝐾 ∶ Given a security parameter 𝜅, the LBS
provider runs the 𝖢𝖨𝖯𝖤.𝖦𝖾𝗇𝖪 algorithm to generate 𝑠𝑘𝑐 , and chooses
a random string 𝑘𝑓 ∈ {0, 1}𝜅 as the key of 𝐹 . The secret key is in the
form of 𝑆𝐾 = (𝑠𝑘𝑐 , 𝑘𝑓 ).

∙ 𝖤𝗇𝖼𝖳𝗋𝖾𝖾(𝑅, 𝑆𝐾) → ̂𝑅 ∶ Given an R-tree 𝑅 built from the dataset
, an encrypted tree ̂𝑅 is generated as follows:

1. For each non-leaf node 𝑢 ∈ 𝑅, the LBS provider encrypts
the correlative rectangle Rect𝑢 = ((𝑥𝑢1 , 𝑦𝑢1 ), (𝑥𝑢2 , 𝑦𝑢2 )) with the
𝖢𝖨𝖯𝖤.𝖤𝗇𝖼𝖣 algorithm, and outputs an encrypted rectangle R̂ect𝑢
= ((𝑥𝑢1 , 𝑦𝑢1 ), (𝑥𝑢2 , 𝑦𝑢2 )).

2. For each leaf node 𝑣 of 𝑅, the LBS provider generates a label
𝑖 = 𝐹𝑘𝑓 (𝑥𝑖|𝑦𝑖) for the correlative POI.

∙ 𝖤𝗇𝖼𝖱𝖾𝖼𝗍(Rect, 𝑆𝐾) → R̂ect ∶ Given a two-dimensional range
query Rect = (𝑥,𝑦), the mobile user encrypts each query cov-
erage with algorithm CIPE.EncQ and generates an encrypted query
R̂ect = (̂𝑥, ̂𝑦).

∙ 𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗋𝖾𝖾(̂𝑅, R̂ect) →  ∶ For each non-leaf node 𝑢 ∈ ̂𝑅, the
edge server tests whether there is an overlapping between R̂ect and
R̂ect𝑢. If so, node 𝑢’s children nodes will be checked; otherwise, the
subtree rooted at node 𝑢 will not be traversed. For each reached leaf
node, the edge server puts the label of a related POI into .

Remark 1. Edge servers are deployed across a large area, each re-
sponsible for processing queries of nearby mobile users. Therefore, it
is unnecessary for edge servers to store a large R-tree index built from
the entire dataset. In order to reduce the storage space incurred on
edge servers, the LBS provider can first divide the dataset  and then
build an R-tree index from each partition. In this way, the edge server
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Algorithm 2 Pretreatment of Voronoi Diagram (PreVD)
Require: The Voronoi diagram , the key 𝑘𝑓 , the maximal number

of Voronoi neighbors 𝑀
Ensure: An encrypted and signed Voronoi diagram ̂
1: Initialize ̂ to an empty table
2: for each 𝑖 ∈  do
3: Initialize 𝐫𝑖, EncNL𝑖 and EncNP𝑖 to empty lists
4: 𝑖 ← 𝐹𝑘𝑓 (𝑥𝑖|𝑦𝑖); 𝑐𝑖 ← | (𝑖)|
5: if 𝑐𝑖 < 𝑀 then
6: Pad  (𝑖) with 𝑀 − 𝑐𝑖 dummy data points
7: for each 𝑗 ∈  (𝑖) do
8: 𝑗 ← 𝐹𝑘𝑓 (𝑥𝑗 |𝑦𝑗 )
9: Append 𝐸(𝑗 ) to EncNL𝑖 and 𝐸(𝑗 ) to EncNP𝑖

10: Generate a signature 𝜎𝑖 for 𝑖 and  (𝑖)
11: 𝐫𝑖 ← (𝐸(𝑖),EncNL𝑖,EncNP𝑖, 𝐸(𝑐𝑖), 𝜎𝑖)
12: ̂[𝑖] ← 𝐫𝑖

is able to filter results more rapidly by using a compact search index.
Note that data points of the search result may be distributed among
different edge servers. To avoid such a scenario, the R-tree index is
constructed based on the data partitions located in a primary edge
server and several adjacent edge servers. Even then, the storage space
and search efficiency can be improved because the data scale stored on
each edge server is much smaller than the entire dataset.

5. The exact search and verification phase

To allow cloud servers to perform an exact 𝑘NN search in a secure
and verifiable way, the LBS provider preprocesses the dataset before
outsourcing. Once receiving preliminary results and search tokens from
edge servers, the dual-cloud servers collaborate to perform a series of
secure protocols to find out exact search results from the pretreated
dataset, and run the verification protocol with mobile users to validate
results.

5.1. Data pre-processing

For enhanced privacy, Paillier cryptosystem is employed to encrypt
the coordinates of each data point 𝑖 and query point . For simplicity,
he encryption of coordinates (𝑥𝑖, 𝑦𝑖) and (𝑥𝑞 , 𝑦𝑞) is expressed as 𝐸(𝑖)

and 𝐸(𝑄), respectively. Furthermore, we assume that the LBS provider’s
public key 𝑝𝑘𝑝 is publicly known, and thus will be omitted from the
input of algorithms/protocols for briefness.

The LBS provider first constructs a Voronoi diagram  = (𝑖,
 (𝑖))𝑖∈[𝑛] from the dataset , and then runs Algorithm 2 to generate
a pretreated Voronoi diagram ̂. Finally, it sends ̂ and the secret
key 𝑠𝑘𝑝 to cloud servers 𝐂1 and 𝐂2, respectively. In Algorithm 2, ̂ is
constructed as a search table indexed by the labels of data points. Let 𝑘𝑓
be the key of PRF 𝐹 , and let 𝑀 = max{| (1)|,… , | (𝑛)|} denote
the maximal number of Voronoi neighbors in  (𝑀 is a small value
even in the large-scale dataset). Algorithm 2 works in the following
way.

For each data point 𝑖 ∈ , the LBS provider first calculates
its label 𝑖 and then encrypts its coordinates into 𝐸(𝑖) and its real
number of Voronoi neighbors into 𝐸(𝑐𝑖). Then, for each Voronoi neigh-
bor 𝑗 of 𝑖, the LBS provider calculates 𝑗 ’s label and appends the
encrypted label 𝐸(𝑗 ) and the encrypted position 𝐸(𝑗 ) to the end of
list 𝖤𝗇𝖼𝖭𝖫𝑖 and list 𝖤𝗇𝖼𝖭𝖯𝑖, respectively. For security, the LBS provider
pads  (𝑖) with dummy data points to hide the real number of
Voronoi neighbors. It is worth noticing that the dummy data points
are randomly chosen from the dataset and will not affect the accuracy
of 𝑘NN queries. Finally, the LBS provider generates an RSA signa-
ture 𝜎 for the information about ( , ( )), and puts the entry
6
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Protocol 3 Secure Nearest Neighbor

Require: 𝐂1 has a set of encrypted data points ̂ = {𝐸(1),… , 𝐸(𝑡)}
and an encrypted query point 𝐸(); 𝐂2 has the secret key 𝑠𝑘𝑝

nsure: 𝐂1 obtains an encrypted point 𝐸(1∗ )
Collaboration in 𝐂1 and 𝐂2

1: 𝐂1 sets 𝐸(1∗ ) ← 𝐸(1)
2: for each encrypted data point 𝐸(𝑖) ∈ ̂ do
3: 𝐂1 and 𝐂2 run the SSED protocol and 𝐂1 obtains 𝐸(▵ (1∗ ,))

and 𝐸(▵ (𝑖,))
4: 𝐂1 and 𝐂2 run the SC protocol to compare 𝐸(▵ (1∗ ,)) and

𝐸(▵ (𝑖,))
5: if 𝐸(▵ (1∗ ,)) > 𝐸(▵ (𝑖,)) then
6: 𝐂1 sets 𝐸(1∗ ) ← 𝐸(𝑖)

(𝐸(𝑖),𝖤𝗇𝖼𝖭𝖫𝑖,𝖤𝗇𝖼𝖭𝖯𝑖, 𝐸(𝑐𝑖), 𝜎𝑖) at ̂[𝑖]. On the basis of the Voronoi
iagram shown in Fig. 2, the result of data pre-processing is shown in
ig. 6. For instance, 1 stores the label that is calculated by coordinates
f data point 1. 𝐸(1) stores the encrypted point coordinates. 𝖤𝗇𝖼𝖭𝖫1

and 𝖤𝗇𝖼𝖭𝖯1 are the encrypted labels and the encrypted data coordinates
of 1’s Voronoi neighbors, respectively. The information of dummy
data points is highlighted in blue in the figure. The real Voronoi
neighbors of 1 are {2,3,7,8}, and dummy neighbors of 1 are
{4,5}. 𝐸(𝑐1) stores the real number of 1’s Voronoi neighbors. At
last, 𝜎1 is RSA signature for the information about (1, (1)).

5.2. Secure protocols in exact 𝑘NN search

In the exact search phase, the dual-cloud servers, 𝐂1 and 𝐂2, collab-
orate to run the following protocols:

Secure Nearest Neighbor (SNN). This protocol allows cloud servers
to securely compute the nearest neighbor of an encrypted query point
from a set of encrypted data points. Let ̂ = {𝐸(1),… , 𝐸(𝑡)} be the
encrypted form of clear set  = {1,… ,𝑡}. Specifically, 𝐂1 takes a
set of encrypted data points ̂ and an encrypted query point 𝐸() as
input. 𝐂2 takes the secret key 𝑠𝑘𝑝 as input. At the end of this protocol,
𝐂1 obtains an encrypted point 𝐸(∗

1 ) s.t. ▵ (∗
1 ,) ≤▵ (𝑖,) where

∗
1 ∈  and 𝑖 ∈  − ∗

1 .
Protocol 3 describes the details of SSN. Specifically, 𝐂1 uses 𝐸(∗

1 )
to denote the nearest neighbor of the encrypted query point 𝐸(). For
each encrypted point 𝐸(𝑖) ∈ ̂, 𝐂1 and 𝐂2 run the SSED protocol to
obtain the encrypted distance 𝐸(▵ (𝑖,)) and then they run the SC
protocol to set 𝐸(∗

1 ) to the encrypted point with minimal distance from
𝐸().

Secure Set Difference (SSD). This protocol allows cloud servers
to securely perform set difference on two encrypted sets. Let 𝑆1 =
{𝐸(𝑥1),… , 𝐸(𝑥𝑁 )} and 𝑆2 = {𝐸(𝑦1),… , 𝐸(𝑦𝑇 )} be the encrypted forms
of clear sets 𝑆1 = {𝑥1,… , 𝑥𝑁} and 𝑆2 = {𝑦1,… , 𝑦𝑇 }, respectively.
Initially, 𝐂1 takes two encrypted sets, 𝑆1 and 𝑆2, as input, and 𝐂2
takes the secret key 𝑠𝑘𝑝 as input. At last, 𝐂1 obtains an encrypted set
̂ ′ = {𝐸(𝑥∗1),… , 𝐸(𝑥𝑡∗ )}𝑥𝑖∗∈𝑆1−𝑆2

, where the plaintext of each element
belongs to 𝑆1 but not to 𝑆2.

Protocol 4 describes the details of SSD. Let 𝜋 and 𝜋−1 denote a
pseudo-random permutation and an inverse permutation, respectively.
For each element 𝐸(𝑥𝑖) ∈ Ŝ1, 𝐂1 checks whether there exists an
element 𝐸(𝑦𝑗 ) ∈ Ŝ2, such that 𝑥𝑖 = 𝑦𝑖. Due to the semantic security
of Paillier cryptosystem, 𝐂1 cannot determine the equality of two clear
values based on their ciphertexts. Therefore, 𝐂1 requests 𝐂2 to perform
decryption. To protect data privacy, 𝐂1 sends 𝑡𝑖,𝑗 ← 𝐸(𝑟𝑖,𝑗 × (𝑥𝑖 − 𝑦𝑗 )),
instead of two encrypted sets, to 𝐂2. Therefore, if 𝑥𝑖 = 𝑦𝑗 , 𝐂2 obtains a
value of zero after decryption, otherwise, 𝐂2 knows nothing about the
data content.

Secure Exact 𝑘NN Search (SEKS). This protocol allows cloud
servers to securely compute the top-𝑘 nearest encrypted data points of

an encrypted query point. Specifically, 𝐂1 takes the immediate result
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Protocol 4 Secure Set Difference.
Require: 𝐂1 has two sets of encrypted values 𝑆1 = {𝐸(𝑥1),… , 𝐸(𝑥𝑁 )}

and 𝑆2 = {𝐸(𝑦1),… , 𝐸(𝑦𝑇 )}; 𝐂2 has the secret key 𝑠𝑘𝑝
nsure: 𝐂1 obtains an encrypted difference set 𝑆′

Calculation in 𝐂1
1: Initialize T to an empty table
2: for the 𝑖-th element 𝐸(𝑥𝑖) ∈ 𝑆1 do
3: Initialize 𝐭 to an empty list
4: for all 𝐸(𝑦𝑗 ) ∈ 𝑆2 in random order do
5: Generate a random number 𝑟𝑖,𝑗
6: 𝑡𝑖,𝑗 ← (𝐸(𝑥𝑖) × 𝐸(𝑦𝑗 )−1)

𝑟𝑖,𝑗

7: {equivalent to 𝑡𝑖,𝑗 ← 𝐸(𝑟𝑖,𝑗 × (𝑥𝑖 − 𝑦𝑗 ))}
8: Append 𝑡𝑖,𝑗 to 𝐭
9: T[𝜋(𝑖)] ← 𝐭

10: Send T to 𝐂2

Calculation in 𝐂2
11: Initialize 𝑉 to an empty set
12: for 𝑖 ∈ [𝑁] do
13: Parse T[𝑖] as (𝑡𝑖,1,… , 𝑡𝑖,𝑇 )
14: if ∃𝑡𝑖,𝑗 ∈ T[𝑖] ∧𝐷(𝑡𝑖,𝑗 ) = 0 then
15: Add 𝑖 into set V
16: Send set 𝑉 to 𝐂1

Calculation in 𝐂1
17: for each element 𝑖 in 𝑉 do
18: 𝑗 ← 𝜋−1(𝑖)
19: Remove the 𝑗-th element 𝐸(𝑥𝑗 ) from 𝑆1

20: 𝑆′ ← 𝑆1

, the encrypted query point 𝐸(), parameter 𝑘, and the encrypted
Voronoi diagram ̂ as input. 𝐂2 takes the secret key 𝑠𝑘𝑝 as input. At
the end of this protocol, 𝐂1 obtains the encrypted search result ̂ =
((∗

1 , 𝐸(∗
1 )),… , (∗

𝑘, 𝐸(∗
𝑘 )), s.t. (1)  ⊆ ; (2) 𝑑(∗

𝑖 ,) ≤ 𝑑(𝑗 ,),
∀∗

𝑖 ∈  ∧ ∀𝑗 ∈  − .
As shown in Protocol 5, SEKS, as the main protocol, invokes the SNN

and SSD protocols as sub-routines as follows. For all labels 𝑖 ∈ , 𝐂1
puts the corresponding encrypted data point 𝐸(𝑖) into set ̂. If the size
of ̂ is equal or greater than 𝑘, 𝐂1 and 𝐂2 run the SNN protocol 𝑘 times
to obtain the top-𝑘 nearest encrypted data points {𝐸(∗

1 ),… , 𝐸(∗
𝑘 )}.

Otherwise, 𝐂1 and 𝐂2 collaborate to find 1NN, . . . , 𝑘NN in order
based on ̂. For the correctness of result, the SSD protocol is used to
remove repeated neighbors and avoid repeated comparisons with the
data points already in ̂.

For example, as shown in Fig. 5, after the preliminary screen-
ing phase, the edge server returns the intermediate result  =
{ , , , , }. If parameter 𝑘 = 3, the dual-cloud servers run
7

3 6 7 4 5 o
Protocol 5 Secure Exact 𝑘NN Search.
Require: 𝐂1 has the intermediate result , the encrypted query point

𝐸(), parameter 𝑘, and the encrypted Voronoi diagram ̂; 𝐂2 has
the secret key 𝑠𝑘𝑝

Ensure: 𝐂1 obtains the encrypted search result ̂
Collaboration in 𝐂1 and 𝐂2

1: 𝐂1 initializes ̂, ̂, and 𝑉 to empty sets
2: for each label 𝑖 ∈  do
3: 𝐂1 locates entry ̂[𝑖] to obtain (𝐸(𝑖),EncNL𝑖,

EncNP𝑖, 𝐸(𝑐𝑖), 𝜎𝑖) and appends 𝐸(𝑖) to ̂
4: if |̂| ≥ 𝑘 then
5: 𝐂1 with input (̂, 𝐸()) and 𝐂2 with input 𝑠𝑘𝑝 run the SNN

protocol 𝑘 times, and 𝐂1 obtains {𝐸(1∗ ),… , 𝐸(𝑘∗ )}
6: 𝐂1 puts (𝑖∗ , 𝐸(𝑖∗ ))𝑘𝑖=1 into ̂
7: else
8: 𝐂1 with input (̂, 𝐸()) and 𝐂2 with input 𝑠𝑘𝑝 run the SNN

protocol, and 𝐂1 obtains 𝐸(1∗ )
9: 𝐂1 puts (1∗ , 𝐸(1∗ )) into ̂

10: 𝐂1 puts 𝐸(1∗ ) into 𝑉 and sets ̂ to an empty set
11: while |̂| < 𝑘 do
12: 𝐂1 locates ̂[1∗ ] to obtain (𝐸(1∗ ),

EncNL1∗ ,EncNP1∗ , 𝐸(𝑐1∗ ), 𝜎1∗ )
13: 𝐂1 with input (EncNL1∗ , 𝑉 ) and 𝐂2 with input 𝑠𝑘𝑝 run the SSD

protocol, and 𝐂1 obtains the encrypted difference set EncNL′1∗

14: for 𝐸(𝑗 ) in EncNP1∗ ∧ 𝐸(𝑗 ) ∈ EncNL′1∗ do
15: 𝐂1 puts 𝐸(𝑗 ) into ̂ and 𝐸(𝑗 ) into 𝑉
16: 𝐂1 with input (̂, 𝐸()) and 𝐂2 with input 𝑠𝑘𝑝 run the SNN

protocol, 𝐂1 obtains 𝐸(1∗ ) and removes it from the set ̂
17: 𝐂1 obtains 1∗ by asking 𝐂2 to perform decryption
18: 𝐂1 puts (1∗ , 𝐸(1∗ )) into ̂

the SNN protocol for 3 times and 𝐂1 obtains the search result ̂ =
(4, 𝐸(4)), (5, 𝐸(5)), (3, 𝐸(3))}. If parameter 𝑘 = 6, the dual-

cloud servers first run the SNN protocol to obtain the top-1 nearest
neighbor 𝐸(4). After putting 𝐸(4) into set 𝑉 , 𝐂1 locates ̂[4]
and puts {𝐸(2), 𝐸(3), 𝐸(5)} and {𝐸(2), 𝐸(3), 𝐸(5)} into ̂ and
̂, respectively. Next, 𝐂1 and 𝐂2 run the SSD protocol to remove the
repeated encrypted labels from 𝖤𝗇𝖼𝖭𝖫4 and then run the SNN protocol
o get the top-2 nearest neighbor 𝐸(5). Then, 𝐂1 asks 𝐂2 to decrypt
(5), and the dual-cloud servers perform in the same way to find out

he top-𝑖 nearest neighbor, for 𝑖 = 3,… , 6.

emark 2. The data packing/unpacking technique [38] allows the
BS provider/cloud servers to pack multiple small values 𝑥1,… , 𝑥𝑡 into

ne large value 𝑋 before encryption and unpack 𝑋 into 𝑥1,… , 𝑥𝑡 after
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decryption. By using this technique, the computational and commu-
nication overheads incurred by Paillier cryptosystem can be largely
reduced.

Remark 3. In order to reduce the computational costs on mobile users,
the dual-cloud servers may participate in the decryption process as
follows: 𝐂1 blinds ̂ with a set of random numbers 𝑅 and sends the
linded result ̂

′
and 𝑅 to 𝐂2 and the mobile user, respectively. 𝐂2

ecrypts the elements in ̂
′

with 𝑠𝑘𝑝 and returns ′ to the mobile
ser. Therefore, the mobile user with ′ and 𝑅 can quickly recover
he plaintexts without performing Paillier decryption.

.3. Verification of search results

To allow mobile users to validate search results, the cloud servers
enerate a verification object  = (𝑠𝑖𝑔 ,𝑔𝑒𝑜) as follows. For
ach (𝑖) ∈ ̂, 𝐂1 puts the RSA signature 𝜎𝑖 into 𝑠𝑖𝑔 and puts
𝖤𝗇𝖼𝖭𝖯𝑖, 𝐸(𝑐𝑖)) into 𝑔𝑒𝑜. Specifically, 𝐂1 and 𝐂2 may participate
n the process as described in Remark 3 to partially decrypt 𝑔𝑒𝑜.
urthermore, 𝑠𝑖𝑔 can be compressed into a single signature 𝜎1,𝑘 for
atch verification due to the aggregation property of a condensed RSA
ignature. In our experiments, the size of 𝑠𝑖𝑔 is constant (512bits),
hus the communication overhead is largely reduced.

Once receiving the search result ̂ and verification object  =
(𝑠𝑖𝑔 ,𝑔𝑒𝑜), the mobile user first decrypts ̂ to obtain the plain-
text result , and then recovers the contents in 𝑔𝑒𝑜.  can be
validated from the following aspects:

∙ Authenticity. The mobile user aggregates the information about
𝑖 and  (𝑖) for 𝑖 ∈ , and then verifies the correctness of
𝑠𝑖𝑔 with this aggregated information. If 𝑠𝑖𝑔 passes the test, she
determines that all of the data points returned are indeed from the
dataset .

∙ Completeness. Suppose that ∗
𝑖 denotes the top-𝑖 nearest result in

 for 𝑖 ∈ [𝑘]. As shown in Section 2, the mobile user first reconstructs
(∗

1 ), based on  (∗
1 ) and ∗

1 , and then checks whether  locates
in (∗

1 ) or not. If so, she confirms that ∗
1 is the nearest neighbor.

therwise, she determines that  is incomplete and terminates the
erification process. If ∗

1 passes the test, for 𝑖 = 2,… , 𝑘, she calculates
he distance between  and all points in  (∗

1 ) ∪ ⋯ ∪  (∗
𝑖 ) and

ests whether ∗
𝑖 is the top-𝑖 nearest neighbor. If so, she confirms the

orrectness of the top-𝑖 result. Otherwise, she determines that  is
ncomplete and terminates the verification process.

For example, the search result of a 3NN query is  = {4,5,3}
in Fig. 2. The mobile user can quickly recover the plaintexts of the
search result  and the verification object  according to Remark 3.
Specifically,  is composed of two parts: 𝑠𝑖𝑔 = 𝜎1,𝑘 and 𝑔𝑒𝑜 =
{ (4), 𝑐4, (5), 𝑐5, (3), 𝑐3}, which can be used to verify the
authenticity and completeness of , respectively. The mobile user
first eliminates dummy data points in 𝑔𝑒𝑜. In terms of authenticity,
𝑠𝑖𝑔 contains the condensed RSA signature signed 𝜎1,𝑘, with which the
mobile user can confirm that the data points in  are from dataset
. Specifically, the mobile user verifies the condensed signature 𝜎1,𝑘
by checking if: 𝜎𝑒1,𝑘 = (

∏𝑘
𝑖=1 ℎ(𝑖| (𝑖))) mod 𝑁 ′, where 𝑖 ∈ 

and  (𝑖) ∈ 𝑔𝑒𝑜. In terms of completeness, The mobile user
reconstructs (4) based on  (4) and 4, then determines that  is
located in (4). According to Property 1 in Section 2, the mobile user
confirms that the nearest neighbor of  is 4. According to Property 2
in Section 2, 5 should belong to  (4), and 3 should belong to
 (4) ∪  (5). Therefore, for each data point 𝑖 ∈  (4), the
mobile user calculates the distance between 𝑖 and  and confirms
hat 5 is the second nearest neighbor of . Similarly, the mobile user
onfirms that 3 is the third nearest neighbor of  by computing the
8

istance between  and each data point in  (4) ∪  (5).
6. Complexity and security analysis

6.1. Computational complexity

To show the efficiency of our SecVKQ framework, we will theoret-
ically analyze the computational complexity of the two-phase search
process and compare it with existing secure 𝑘NN search schemes. For
the sake of illustration, we only consider the operations related to
data encryption/decryption. Let 𝑒𝑛𝑐𝑙 and 𝑑𝑒𝑐𝑙 denote the encryption
and decryption operations in the light-weighted CIPE scheme, and let
𝑒𝑛𝑐𝑝 and 𝑑𝑒𝑐𝑝 denote the encryption and decryption operations in the
expensive Paillier cryptosystem, respectively.

In the data pre-processing stage, the LBS provider builds an R-tree
index 𝑅 of fanout 2 from the dataset  and encrypts 𝑅 with the

IPE scheme. Furthermore, it constructs a Voronoi diagram  from
, and encrypts  with the Paillier cryptosystem. The computational

omplexity is 𝑂(𝑛)𝑒𝑛𝑐𝑙 + 𝑂(𝑛 ×𝑀)𝑒𝑛𝑐𝑝, where 𝑛 is the size of  and 𝑀
s the maximal number of Voronoi neighbors in .

To retrieve the top-𝑘 nearest POIs, the mobile user generates a
earch token   = (R̂ect, 𝑘, 𝐸()) to the nearby edge server, where
êct is the encrypted two-dimensional range query under the CIPE
cheme, and 𝐸() is the encrypted query point under the Paillier
ryptosystem. Once receiving the blinded search result ′ and a set of

random numbers 𝑅 from the cloud server, the mobile user can recover
he plaintext result without performing Paillier decryption. Therefore,
he computational complexity is 𝑂(1)(𝑒𝑛𝑐𝑙 + 𝑒𝑛𝑐𝑝).

In the preliminary screening phase, the edge server evaluates en-
rypted range query R̂ect over the encrypted R-tree index ̂𝑅 to

find out the intermediate result . Therefore, the computational
complexity on the mobile user is 𝑂(log 𝑛)𝑑𝑒𝑐𝑙.

The case in the exact search phase is relatively complicated, since
he dual-cloud servers need to run a series of secure protocols. As
escribed in [26,35], the preliminary SSED and SC protocols need
constant number of Paillier encryption and decryption operations.

he sub-protocol SNN needs to run the SSED and SC protocols for
̂| times to find out the query point’s nearest neighbor from a set
f encrypted data points ̂. The sub-protocol SSD needs to perform
aillier decryption operations for |𝑆1| × |𝑆2| times to compute the set
ifference on two encrypted sets, 𝑆1 and 𝑆2. Note that by using the data
acking/unpacking technique [38], the time of decryption operations
an be reduced to |𝑆1|. If the size of  is larger than 𝑘, the SEKS
rotocol needs to run the SSED protocol 𝐼 times and the SNN protocol
times, where 𝐼 is the size of the intermediate result. Therefore, the

earch complexity is 𝑂(𝑘×𝐼)(𝑒𝑛𝑐𝑝+𝑑𝑒𝑐𝑝). Otherwise, the SEKS protocol
eeds to run the SSD and SNN protocols for 𝑘 times based on the
retreated Voronoi diagram ̂. Therefore, the search complexity is
(𝐼 +𝑘2 ×𝑀)(𝑒𝑛𝑐𝑝+𝑑𝑒𝑐𝑝), where 𝑀 is the maximal number of Voronoi
eighbors. The comparison results between SecVKQ and existing secure
NN search schemes are summarized in Table 2. Note that the work
n [26,27] cannot support result verification and thus consumes less
verhead in the data preprocessing stage.

.2. Security analysis

The security of the preliminary screening phase is based on the
IPE scheme, which has been proven to be secure in the known-
laintext model [36]. Therefore, we mainly analyze the exact search
hase through proving the security of the proposed SNN, SSD, and
EKS protocols. Following the formal definition of multi-party compu-
ation introduced in [28,38], we adopt the framework of simulation
aradigm [39] to analyze the security of the proposed protocols.

heorem 1 (Composition Theorem [39]). Given a protocol 𝛺 consisting of
ultiple sub-protocols, if all the sub-protocols are secure and all the inter-
ediate results are random or pseudo-random, the protocol 𝛺 is considered
ecure.
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Table 2
Complexity Analysis.

LBS Provider Mobile User Edge Cloud

SecVKQ 𝑂(𝑛)𝑒𝑛𝑐𝑙 + 𝑂(𝑛 ×𝑀)𝑒𝑛𝑐𝑝 𝑂(1)(𝑒𝑛𝑐𝑙 + 𝑒𝑛𝑐𝑝) 𝑂(log 𝑛)𝑑𝑒𝑐𝑙 𝑂(𝐼 + 𝑘2 ×𝑀)(𝑒𝑛𝑐𝑝 + 𝑑𝑒𝑐𝑝)

Ref. [28] 𝑂(𝑚2 × 𝑔 + 𝑛 ×𝑀)𝑒𝑛𝑐𝑝 𝑂(1)𝑒𝑛𝑐𝑝 – 𝑂(𝑘 × (𝑛 +𝑀))𝑒𝑛𝑐𝑝 + 𝑂(𝑘 × (
√

𝑛 +𝑀))𝑑𝑒𝑐𝑝
Ref. [27] 𝑂(𝑛)𝑒𝑛𝑐𝑝 𝑂(1)𝑒𝑛𝑐𝑝 – 𝑂(

√

𝑛 × (𝑙 + 𝑘 × 𝑙 × log 𝑛))(𝑒𝑛𝑐𝑝 + 𝑑𝑒𝑐𝑝)

Ref. [26] 𝑂(𝑛)𝑒𝑛𝑐𝑝 𝑂(1)𝑒𝑛𝑐𝑝 – 𝑂(𝑛 × (𝑙 + 𝑘 × 𝑙 × log 𝑛))(𝑒𝑛𝑐𝑝 + 𝑑𝑒𝑐𝑝)

Notations: 𝑛 denotes the size of dataset , 𝑘 denotes the search parameter for 𝑘NN search, 𝐼 denotes the size of immediate result,
and 𝑀 denotes the maximal number of Voronoi neighbors. 𝑚 denotes the number of grids and 𝑔 denotes the maximal number of grid
points in [28]. 𝑙 denotes the domain size (in bits) of the squared Euclidean distance in [26,27].
g

Theorem 2. The SNN protocol is secure if the SSED and SC protocols are
secure.

Proof. The SNN protocol is based on the SSED and SC protocols, the
security of which has been proven in previous work [26,35]. Since all
of intermediate results are random, the SNN protocol is secure based
on Theorem 1. ■

To analyze protocols SSD and SEKS, a simulator is constructed
to simulate the actual execution view. According to the simulation
paradigm, a protocol is considered to be secure if a probabilistic
polynomial-time (PPT) adversary cannot distinguish between the real
view and the simulated view.

Theorem 3. The SSD protocol is secure for all efficient adversaries 𝐀𝐝𝐯, if
there exists a simulator Sim and the probability Pr(Real𝐀𝐝𝐯𝑆𝑆𝐷) − Pr(Sim𝐀𝐝𝐯

𝑆𝑆𝐷)
is negligible.

Proof. The real view Real𝐀𝐝𝐯𝑆𝑆𝐷 and simulated view Sim𝐀𝐝𝐯
𝑆𝑆𝐷 are defined

s follows:
∙ Real𝐀𝐝𝐯𝑆𝑆𝐷: 𝐂1 has two sets of encrypted values 𝑆1 = {𝐸(𝑥1),…,

𝐸(𝑥𝑁 )}, 𝑆2 = {𝐸(𝑦1),… , 𝐸(𝑦𝑇 )} and 𝐂2 has the secret key 𝑠𝑘𝑝. In the
SSD protocol, 𝐂1 first uses the additive homomorphism property of
aillier cryptosystem to compute an obfuscated difference 𝑡𝑖,𝑗 between

each encrypted data 𝐸(𝑥𝑖) in 𝑆1 and 𝐸(𝑦𝑗 ) in 𝑆2. Next, all differences
are permuted before being sent to 𝐂2, which decrypts the differences
and puts the permutated indexes corresponding to the value of zero
into the intermediate result. At last, 𝐂1 outputs the final result 𝑆′ =
{𝐸(𝑥1∗ ),… , 𝐸(𝑥𝑡∗ )}𝑥𝑖∗∈𝑆1−𝑆2

.
∙ Sim𝐀𝐝𝐯

𝑆𝑆𝐷: The simulator Sim receives 𝑆′, and then generates two
sets of random values 𝑥′1,… , 𝑥′𝑁−𝑡 and 𝑦′1,… , 𝑦′𝑇−𝑁+𝑡 where 𝑥′𝑖 < 0
and 𝑦′𝑗 < 0 for 𝑖 ∈ [𝑁 − 𝑡] and 𝑗 ∈ [𝑇 − 𝑁 + 𝑡], respectively.
This guarantees that 𝑥′𝑖 and 𝑦′𝑗 are outside the set {𝑥1∗ ,… , 𝑥𝑡∗}. Then,
Sim encrypts 𝑥′1,… , 𝑥′𝑁−𝑡 twice and 𝑦′1,… , 𝑦′𝑇−𝑁+𝑡 once with Pail-
lier cryptosystem. Next, Sim constructs the simulated sets by setting
𝑆1 = {𝐸(𝑥1∗ ),… , 𝐸(𝑥𝑡∗ ), 𝐸1(𝑥′1),… , 𝐸1(𝑥′𝑁−𝑡)}, and 𝑆2 = {𝐸2(𝑥′1),… ,
𝐸2(𝑥′𝑁−𝑡), 𝐸(𝑦′1),… , 𝐸(𝑦′𝑇−𝑁+𝑡)}, where 𝐸1(𝑥′𝑖) and 𝐸2(𝑥′𝑖) denote the first
and second encryption operations, respectively. Due to the semantic
security of Paillier cryptosystem, the ciphertext of 𝐸2(𝑥′𝑖) looks different
from that of 𝐸1(𝑥′𝑖). After shuffling 𝑆1 and 𝑆2, Sim executes the SSD
protocol and outputs the results 𝑆′.

Intuitively, the simulated view is computationally indistinguishable
from the actual execution view because their outputs are identical.
Therefore, the SSD protocol is secure. ■

Theorem 4. The SEKS protocol is secure for all efficient adversaries
𝐀𝐝𝐯, if there exists a simulator Sim and the probability Pr(Real𝐀𝐝𝐯𝑆𝐸𝐾𝑆 ) −
Pr(Sim𝐀𝐝𝐯

𝑆𝐸𝐾𝑆 ) is negligible.

Proof. Similarly, we define the real view Real𝐀𝐝𝐯𝑆𝐸𝐾𝑆 and the simulated
view Sim𝐀𝐝𝐯

𝑆𝐸𝐾𝑆 as follows.
∙ Real𝐀𝐝𝐯𝑆𝐸𝐾𝑆 : 𝐂1 has the intermediate result , the encrypted query

point 𝐸(), parameter 𝑘, and the encrypted Voronoi diagram ̂, and
9

𝐂2 has the secret key 𝑠𝑘𝑝. During the SEKS protocol, 𝐂1 first utilizes
the SSED protocol to compute the distance between 𝐸() and each
encrypted point whose label are in the intermediate result . If the
size of  is not less than 𝑘, 𝐂1 and 𝐂2 run the SNN protocol 𝑘 times to
get the search result. Otherwise, based on encrypted Voronoi diagram
̂, 𝐂1 and 𝐂2 run the SNN and SSD protocols to find 1NN, … , 𝑘NN
in order. At last, 𝐂1 outputs the final result ̂.

∙ Sim𝐀𝐝𝐯
𝑆𝐸𝐾𝑆 : The simulator Sim receives ̂ = {(∗

1 , 𝐸(∗
1 )),… ,

(∗
𝑘, 𝐸(∗

𝑘 ))}. Then, Sim generates a set of encrypted points ̂ =
{𝐸( ′

1),… , 𝐸( ′
𝑛−𝑘)} in the following way: For 𝑖 ∈ [𝑛−𝑘], it generates a

random point 𝑖, computes its label as 𝑖, encrypts its coordinates into
𝐸(𝑖), and powers 𝐸(𝑖) by a large random number 𝑟𝑖 to obtain 𝐸( ′

𝑖 ).
This guarantees that all points in ̂ are farther from the encrypted
query point 𝐸() compared to any point in ̂. Next, Sim constructs
a simulated dataset 𝐸(′) = {𝐸(∗

1 ),… , 𝐸(∗
𝑘 ), 𝐸( ′

1),… , 𝐸( ′
𝑛−𝑘)}, and

enerates the simulated Voronoi diagram ̃ as follows: For 𝑖 ∈ [𝑘], it
chooses random 𝑐𝑖 points from 𝐸(′) to be 𝐸(∗

𝑖 )’s Voronoi neighbors
under the condition that ∗

𝑖 ∈ (∗
1 ) ∪ …(∗

𝑖−1), and then it
sets ̂[∗

𝑖 ] to (𝐸(∗
𝑖 ),𝖤𝗇𝖼𝖭𝖫𝑖∗ ,𝖤𝗇𝖼𝖭𝖯𝑖∗ , 𝐸(𝑐𝑖), 𝜎𝑖). For 𝑗 ∈ [𝑛 − 𝑘], it

chooses 𝑐𝑗 points from 𝐸(′) to be 𝐸( ′
𝑗 )’s Voronoi neighbors and

then sets ̂[𝑗 ] to (𝐸( ′
𝑗 ),𝖤𝗇𝖼𝖭𝖫𝑗 ,𝖤𝗇𝖼𝖭𝖯𝑗 , 𝐸(𝑐𝑗 ), 𝜎𝑗 ). With the same

intermediate result , same encrypted query point 𝐸(), parameter
𝑘, and simulated Voronoi diagram ̃, Sim executes the SEKS protocol
and outputs the results ̃.

All sub-protocols have been proven to be secure. Given the identical
outputs, no PPT adversary can distinguish Sim𝐀𝐝𝐯

𝑆𝐸𝐾𝑆 from Real𝐀𝐝𝐯𝑆𝐸𝐾𝑆 .
Hence, the SEKS protocol is secure. ■

7. Evaluation

This section will evaluate the performance of our SecVKQ frame-
work in terms of computational and communication costs. The experi-
ment results related to the CIPE scheme are omitted since its execution
time is negligible compared to the Paillier cryptosystem. For example,
the CIPE scheme requires less than 1 s to find preliminary results
from 1 million data points. To validate the effectiveness of SecVKQ in
practice, we conduct experiments on two real datasets, and compare
SecVKQ to the state-of-the-art work, SVkNN, which also utilizes Paillier
cryptosystem and the dual-cloud model to achieve secure exact 𝑘NN
queries.

7.1. Parameter setting

The protocols run by the dual-cloud servers are deployed on an
Aliyun ECS instance (Intel Xeon E5-2682 2.5 GHz CPU and 128G RAM);
the protocols run by the mobile users are deployed on a PC machine
(Intel Core i5 3.2 GHz CPU and 8G RAM); the rest of protocols are
deployed on a local server (Intel Xeon Gold 5218 2.3 GHz CPU and
64G RAM). The programs implemented in Java are evaluated on two
real datasets, Gowalla and Brightkite,1 both of which include over 1
million location check-ins from mobile users.

1 http://snap.stanford.edu/data/.

http://snap.stanford.edu/data/
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Table 3
Comparison of Setup Time (s) under the Setting of 𝐾 = {512, 1024}.
𝑛(×103) SecVKQ SVkNN

Gowalla Brightkite Gowalla Brightkite

512 1024 512 1024 512 1024 512 1024

2 123.6 657.7 115.7 509.4 546.1 3,084 492.7 2,639
10 446.3 2,286 425.9 2,940 2,361 13,232 2,137 11,505
100 6,181 32,886 5,791 30,028 17,782 97,353 16,629 86,959

Table 4
Comparison of Communication Costs (MB) under the Setting of 𝐾 = {512, 1024}.
𝑛(×103) SecVKQ SVkNN

Gowalla Brightkite Gowalla Brightkite

512 1024 512 1024 512 1024 512 1024

2 1.5 2.7 1.5 2.6 3.3 6.3 3.0 5.9
10 7.9 13.9 7.6 13.0 15.2 30.7 13.7 29.5
100 81.2 139.6 76.9 132.4 126.7 251.5 121.2 242.3

In the experiment, the dataset size 𝑛 is set to [2000 ∼ 100,000]. The
arameter 𝑘 in the search phase and verification phase is set to [1 ∼ 20]
nd [1 ∼ 100], respectively. The size of the intermediate results is set to
= {0.4𝑘, 0.8𝑘, 10𝑘, 20𝑘}. The key size of the condensed RSA encryption

s set to 512 bits, and the key size 𝐾 of the Paillier cryptosystem are
hosen from {256, 512, 1024}. The PRF 𝐹 is instantiated using HMAC-
HA-512. While implementing the SVkNN scheme, the grid granularity
s set to 16 and the cryptographic hash functions are implemented via
MAC-SHA-512.

.2. Experiment results

LBS provider. The execution time and communication cost in data
reprocessing are shown in Tables 3 and 4, respectively. The computa-
ional cost includes two components: the cost of encrypting the Voronoi
iagram and the cost of generating signatures. From the experiment
esults, SVkNN requires additional operations like grid partition, grid
adding, and grid encryption, and thus performs worse in this stage.
Dual-cloud servers. As described in Section 6.1, our search time

s influenced by parameters 𝑛, 𝑘,𝐾, and 𝛼. Therefore, we conduct ex-
eriments under different parameter settings to show the effectiveness
f SecVKQ. From Fig. 7, we know that the search time of SecVKQ
ncreases with either 𝑘 or 𝐾. The parameter 𝛼 represents the ratio of
he number of data points produced by the range query to the query
arameter 𝑘. In the case of 𝛼 less than 1, cloud servers need to search
esults according to the encrypted Voronoi diagram, thus it will take
ore search time than the case that 𝛼 is more than 1. In the same

ituation (i.e., 𝛼 < 1 or 𝛼 > 1), the search time of SecVKQ also increases
ith the parameter 𝛼 because the cloud servers need to perform more

alculations related to homomorphic encryption. This result agrees with
he theoretical analysis. The search time in the case of 𝛼 = 0.4𝑘 and
= 0.8𝑘 (i.e., || < 𝑘) is larger than that in the case of 𝛼 = 10𝑘 and
= 20𝑘 (i.e., || ≥ 𝑘). Furthermore, the parameter 𝛼 has a greater

mpact on the search time when || ≥ 𝑘 compared to the case of
| < 𝑘. Fig. 8 shows the comparison results between SecVKQ and
VkNN with a varied 𝑛. From the result, we know that the search time
f SVkNN is linearly correlated with 𝑛, but our search time is insensitive
o 𝑛. For example, in Gowalla, when 𝑘 = 10, 𝛼 = 0.8𝑘, and 𝐾 = 512, the

search time of SVkNN and SecVKQ grows from 77.02 s to 3600.96 s
and from 4.14 s to 10.94 s, respectively, while 𝑛 grows from 2000 to
100,000. The reason for this is that the preliminary screening phase
enables the cloud servers to check a small set of data points instead of
the whole dataset. Figs. 9 and 10 show that both schemes are impacted
by parameter 𝑘 and 𝐾, but SecVKQ is much more efficient than SVkNN
even under the setting of a small value of 𝛼. For ease of comparison,
Figs. 8–10 use log-scale 𝑦-coordinates.
10
Mobile users. To generate a search token, the mobile user encrypts
the query point with the Paillier cryptosystem, which incurs about
9.65 ms. With the help of cloud servers, the mobile user can recover
plaintext results without performing Paillier decryption. As shown in
Fig. 11, the verification cost in both SecVKQ and SVkNN increases
with 𝑘. Furthermore, the VO size increases with the size of the dataset,
since a larger dataset generates a larger 𝑔𝑒𝑜. The comparative results
show that our verification process incurs more execution time and
less communication cost compared to SVkNN. The reason is that the
condensed RSA signature allows for short signature length, but requires
additional costs for the compression of signatures.

8. Related work

8.1. Secure 𝑘NN query

Nowadays, to protect data security and query privacy, more and
more works have been done focusing on the secure 𝑘NN queries. Wong
et al. [18] proposed a novel encryption scheme Asymmetric-Scalar-
Product-Preserving Encryption (ASPE) which enabled the comparisons
to be performed based on ciphertexts. Since then, Wang et al. [19]
and Hu et al. [20] proposed EF schemes which utilized the light-
weighted OPE and DRE to support efficient 𝑘NN queries on encrypted
data. However, the above schemes achieve only weak security, and
suffer from various attacks, e.g., known-plaintext attacks and inference
attacks.

For enhanced security, Yi et al. [40] exploited private information
retrieval (PIR) to achieve privacy-preserving 𝑘NN queries over clear
datasets. Elmehdwi et al. [26] proposed the classic dual-cloud model,
and utilized the Paillier cryptosystem to achieve secure 𝑘NN queries.
Inspired by their work, Kim et al. [27] improved query efficiency
through building secure kd-tree indexes. The main drawback of these
schemes is that it is hard from them to be applied to large-scale datasets
due to the high computational overhead of the Paillier cryptosystem.
Besides, Li et al. [41] proposed a secure nearest neighbor queries
scheme and proved that it was secure against adaptive chosen keyword
attacks. However, their scheme cannot support secure 𝑘NN queries. Lei
et al. [42] designed a secure and efficient 𝑘NN queries scheme, which
employed the projection function-based approach to code neighbor re-
gions of a given location. Chen et al. [43] solved the problem of secure
𝑘NN queries by using lattice-based additively homomorphic encryption,
distributed oblivious RAM and garbled circuits. Unfortunately, both
schemes of Lei et al. and Chen et al. only achieve approximate 𝑘NN
queries over encrypted data. Meanwhile, all the above schemes cannot
support the verification of search results.

8.2. Verifiable query

Merkle Hash Tree (MHT) [44] and signature chain [45] are two
main techniques in the verification of multi-dimensional range queries
and skyline queries [46–49]. However, 𝑘NN queries need to compute
the squared Euclidean distance between a query point and data point,
and thus it is harder for mobile users to verify the correctness of search
results.

Although a number of schemes [50–52] were proposed to verify
queries over clear datasets, the research in verification of secure 𝑘NN
queries is still in its infancy. Jiang et al. [53] proposed a verifiable
dynamic searchable symmetric encryption scheme based on the accu-
mulation tree. However the scheme only supports secure and verifiable
boolean queries, rather than 𝑘NN queries. Rong et al. [29] were the
first to solve the problem of secure and verifiable 𝑘NN queries. Unfortu-
nately, their scheme lacked security due to the adoption of ASPE. Yang
et al. [30] proposed a scheme to support verification of 𝑘NN queries
on encrypted road networks. As the state-of-the-art work in this field,
Cui et al. [28] proposed the SVkNN scheme, which utilized the Voronoi
diagram for verification. However, the SVkNN scheme is based on the
Paillier cryptosystem and its search complexity is linearly correlated to

the size of datasets.
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Fig. 7. The search time of SecVKQ with fixed 𝑛 = 20,000 and 𝑘 = 10 while 𝐾 ranges from 256 to 1024.
Fig. 8. Comparison of search time between SecVKQ and SVkNN with fixed 𝑘 = 10, 𝛼 = 0.8𝑘, and 𝐾 = 512 while 𝑛 ranges from 2000 to 100,000.
Fig. 9. Comparison of search time between SecVKQ and SVkNN with fixed 𝑛 = 20,000, 𝛼 = 0.8𝑘, and 𝐾 = 512 while 𝑘 ranges from 1 to 20.
Fig. 10. Comparison of search time between SecVKQ and SVkNN with fixed 𝑛 = 20,000, 𝛼 = 0.8𝑘, and 𝑘 = 10 while 𝐾 ranges from 256 to 1024.
9. Conclusion

In this paper, we propose a SecVKQ framework to achieve secure
and verifiable 𝑘NN queries in sensor–cloud systems. By utilizing se-
cure data separation and adaptive encryption strategy, SecVKQ subtly
integrates edge servers into the dual-cloud model so as to optimize
query performance. Under SecVKQ, a series of secure protocols and a
succinct verification strategy are proposed to obtain exact 𝑘NN results
while preserving data privacy, index privacy, query privacy, and result
11
correctness. Experiment results demonstrate that SecVKQ is efficient

and practical on outsourced sensor datasets. However, it is hard for

a Voronoi diagram to support queries of higher dimensional sensor

data. As part of our future work, we will try to improve the SecVKQ

framework by using flexible verifiable data structures.
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Fig. 11. Comparison of verification cost between SecVKQ and SVkNN on different datasets while 𝑘 ranges from 1 to 100.
,
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