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ARTICLE INFO ABSTRACT

Keywords: Sensor—cloud has gained increasingly popularity since it bridges the physical world and the cyber world
Security through pervasive computation. This paper focuses on secure and verifiable k nearest neighbor (kNN) queries
Zerlﬁcanon over large-scale outsourced datasets in sensor—cloud systems. Existing work in this line often incurred high
NN queries

computational and communication overheads, remaining far away from practical and scalable. To this end,
we propose SecVKQ, a two-phase search framework, which mainly includes a preliminary screening phase and
an exact search phase. SecVKQ purposely takes advantage of secure data separation and adaptive encryption
strategy, embracing edge servers into the classic dual-cloud model, so as to optimize query performance. Under
SecVKQ, we design a series of secure protocols and develop a succinct verification strategy to derive a unified
solution. The experimental results demonstrate the effectiveness of SecVKQ. Compared to the state-of-the-
art work, SecVKQ achieves a speed-up of two orders of magnitude in search latency, and a savings of 50%

Sensor—cloud systems
Edge computing

communication cost for verification.

1. Introduction

In recent years, sensor—cloud as the product of combining wireless
sensor networks and cloud computing has received extensive attention
from both academia and industry [1-3]. In addition to servers and
people, sensors are important components of sensor—cloud systems.
People can get relevant information (e.g., location, temperature and
humidity) through different sensors [4]. With the rapid advances in
mobile communications, location-based services (LBSs) are emerging
as the next killer application in sensor—cloud systems. An LBS allows
a mobile user to query an LBS provider, through location-aware sen-
sors anytime and anywhere, in order to retrieve detailed information
(e.g., position, ranking and photos) about points of interest (POIs) in
her vicinity [5,6].

Among various LBS applications in sensor-cloud systems, k nearest
neighbor (kNN) queries that allow a mobile user to obtain the top-k
POIs with the shortest distance between her current position reach the
top of popularity. For example, user Alice sitting at Starbucks is seeking
for the closest restaurant. Mobile users will query LBS providers in a
ubiquitous manner. To improve user experiences, LBS providers may
deploy geographically distributed servers (referred to as edge servers)
across a large area, so that mobile users can get fast responses no matter
where they are [7-10].
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However, the extensive popularization of LBS applications renders
the explosive growth of location-related data. The data volume is
expanding so fast that LBS providers could hardly keep up with the
requirement. Hence, it is a promising choice for LBS providers to out-
source their data to cloud service providers (CSP) for enhanced services
and cost savings [11,12]. For example, the popular LBS providers,
Foursquare and Yelp, outsourced their entire datasets to Amazon Web
Services. On the other hand, outsourcing data to cloud service providers
raises both data security and confidentiality issues [13-17].

Let us consider the following application scenario as shown in
Fig. 1. The LBS provider outsources dataset D to the CSP, which is
delegated to provide various location-based services to mobile users.
As a typical example of kNN queries, Alice submits her location Q
together with parameter k = 3 to the cloud server, which then finds out
and returns the detailed information about the top-3 nearest POIs by
comparing the distances between location Q and nearby POIs’ positions.
The following requirements are essential to this scenario: (1) Security.
The CSP is not fully trusted and may leak sensitive data inadvertently
or intentionally. For instance, the recent news about Amazon S3 di-
vulging personal medical information. The dataset D or the mobile
user’s locations/trajectories are of high commercial value and related to
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Fig. 1. Application scenario, where D = {P,...,Ps}. P, is an unregistered restaurant
outside D and P is a remote restaurant.

privacy. Therefore, the contents of both dataset D and query Q need to
be preserved against the CSP. (2) Verifiability. The CSP may deliberately
falsify search results for business benefit. For example, the CSP forges
the search result as { P, P;, Py}, when the truly top-3 nearest POIs are
{P,, P,, P;}. Therefore, the mobile user should have the ability to verify
the search results in the aspects of authenticity (i.e., the POIs returned
indeed are from the dataset D) and completeness (i.e., no POIs satisfying
the query condition are omitted).

Most of the existing work addressed the problem of security and
proposed a number of secure kNN search schemes based on crypto-
graphic methods with support for comparisons over ciphertexts. Gen-
erally speaking, the LBS provider encrypts the dataset before out-
sourcing so that the mobile user issues encrypted queries to retrieve
encrypted POIs. According to the adopted encryption solutions, the
secure kNN search schemes can be classified into efficiency-first (EF)
schemes and security-first (SF) schemes. The EF schemes [18-22] em-
ploy light-weighted cryptography, such as order-preserving encryption
(OPE) [23] or distance-recoverable encryption (DRE) [18], to support
efficient kNN queries over encrypted data. The main drawback of
EF schemes is that OPE and DRE are vulnerable to inference attacks
and thus provide only a weak security guarantee [24,25]. The SF
schemes [26-28] apply homomorphic encryption, Paillier into the dual-
cloud model [26] for enhanced security. However, the SF schemes
are impractical to large datasets because of the high computational
overhead of homomorphic encryption.

Until now, little work [28-30] has been done in achieving security
and verifiability simultaneously. As the state-of-the-art work in this
field, Cui et al. [28] proposed the SVKNN scheme, which unified SF
schemes with result integrity. The SVKNN scheme builds grid-based
index to improve query performance, but its search complexity is linear
to the size of datasets, thus lacking scalability. For example, SVKNN
needs around 1 hour on average while performing 10NN queries on a
dataset of 100,000 POIs. The LBS dataset usually contains hundreds of
thousands or even millions of POIs. Therefore, how to efficiently achieve
secure and verifiable kNN queries on large-scale dataset is still an open
problem.

To solve this problem, we propose a comprehensive search frame-
work, SecVKQ, where the search process is divided into the preliminary
screening phase performed on edge servers and the exact search phase
performed on two collude-resistant clouds. The dual-cloud model has
been widely applied in secure kNN search schemes, since it was pro-
posed in [26]. Existing work [27,28] assumed that two clouds will
not collude in the search phase. We believe that this assumption is
reasonable since two clouds of different interests are usually commer-
cial competitors. For example, two clouds may be Google and Amazon,
which are highly improbable to conspire with each other.

The most notable feature of SecVKQ is the integration of edge
servers into the classic dual-cloud model, enabling the search complex-
ity on the cloud side to be relevant to the size of preliminary results.
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Instead of a simple composition, SecVKQ takes advantage of clouds and
edges to optimize query efficiency by utilizing secure data separation
and adaptive encryption strategy. On the high level, the edge servers
are responsible for evaluating a query coverage over an R-tree index
built from the dataset to obtain preliminary results, in contrast, the
cloud servers process exact positions of POIs and users to perform
exact kNN queries. In terms of privacy levels, the R-tree index (resp.
the query coverage) contains less sensitive information compared to
the POIs’ positions (resp. mobile users’ exact positions). Hence, the
light-weighted comparable inner product encoding (CIPE) scheme and
the expensive homomorphic encryption are adopted in the preliminary
screening phase and the exact search phase, respectively.

Under SecVKQ, we design a series of secure protocols to facil-
itate secure kNN searches over large-scale datasets and develop a
compact verification strategy based on Voronoi diagram [31] and
condensed RSA signature [32]. The main contributions of this paper
are summarized as follows:

+ We design a comprehensive search framework, SecVKQ, to
achieve secure and verifiable kNN queries on sensor datasets.
SecVKQ utilizes secure data separation and adaptive encryption
strategy to take full advantage of clouds and edges in optimizing
query efficiency.

We utilize the Voronoi diagram for verification and propose a
series of secure protocols and optimization techniques to improve
the query performance further.

We provide rigorous security analysis and evaluate the perfor-
mance of SecVKQ on two real-world datasets to show its effec-
tiveness. Experimental results demonstrate that SecVKQ achieves
a speedup of two orders of magnitude in search latency compared
to the state-of-the-art scheme. At best, it needs only around 10
seconds on average while performing secure and verifiable IONN
queries on a dataset of 100,000 POIs.

2. Preliminary
2.1. Voronoi diagram

Suppose that the dataset consists of n data points, D = {Py, ..., P,},
where each data point denotes a POI. The Voronoi diagram partitions
the space into n disjoint regions, where each region contains exactly
one data point. The region where data point P; is located is called
P;’s Voronoi cell, denoted by VC(P;), and two data points P; and P;
are Voronoi neighbors if YC(P;) and VC(P)) share a common edge.
The set of Voronoi neighbors of data point P; is denoted by VN'(P)).
Let VD = (P;, VN (P)))c, denote the Voronoi diagram built from the
dataset D. VD has two properties that are useful for the verification of
kNN queries [31]:

Property 1. Given a query point Q, the nearest neighbor of Q is data point
P, if Q € VC(P).

Property 2. If data points P, ..., P, are the k(k > 1) nearest neighbors
of the query point Q, then P; belongs to VN'(P)) U -+ U VN (P,_,), for
i=2,...,k

For example, given a dataset D that contains 8 data points as shown
in Fig. 2-(b), the Voronoi diagram is shown in Fig. 2-(a). The Voronoi
neighbors of data point P, include VN (P,) = {P,, P, Ps} since VC(P,)
shares a common edge with VC(P;) for i € {2,3,5}. In this example, the
search result of a 3NN query is SR = {P,, Ps, P;}.
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POI | Coordinate | Voronoi Neighbors
P, | (170150) {P2, P3, P7, Pg}
P, | (190,300) {P1, P3, Ps}

Ps | (280,200) | {Py, Py, P4, Ps, P, P7}
P, | (350,270) {P, P3, P5}

Ps | (400,220 {P3, P4, Pe}

Pe | (30080) {P3, Ps, P7, Pg}
P; | (250,140) {Py, P3, Pe, Pg}
Ps | (200,100) {P1, Pe., P7}

150 200

250 300
(a) Voronoi diagram (b) Dataset D

Fig. 2. An example of Voronoi diagram.

2.2. Paillier cryptosystem

The Paillier cryptosystem is a probabilistic asymmetric encryption
scheme with the additive homomorphic property [33]. Let E denote the
encryption algorithm under public key pk ,, let D denote the decryption
algorithm under secret key sk,, and let N denote the product of two
large primes. Given two plaintexts x;,x, € Zy, Paillier cryptosystem
has following additive homomorphic property:

D(E(x,) X E(x,) mod N?) = x; + x,
D(E(x;)*2 mod N2) = x; X x,

Paillier cryptosystem achieves semantic security [34] and will be used
to encrypt the exact positions of data/query points.

2.3. Secure protocols in dual-cloud model

Secure Squared Euclidean Distance (SSED) [26]. Given two cloud
servers, C, and C,, SSED allows to securely compute the encrypted
squared Euclidean distance of two encrypted points. Specifically, C,
takes the encrypted points (E(P)), E(P,)) as input and C, takes the
secret key sk, as input. At the end of this protocol, C, obtains E(a
(P, P,)), where A (P,,P,) denotes the squared Euclidean distance
between P, and P,.

Secure Comparison (SC) [35]. Given two cloud servers, C, and C,,
SC allows to securely compare two encrypted integers. Specifically, C,
takes the encrypted integers (E(x,), E(x,)) as input, and C, takes the
secret key sk, as input. At the end of this protocol, C; obtains E(xy,,),
where x;, = min(xy, x,).

2.4. Comparable inner product encoding

The CIPE scheme [36] consists of the following algorithms:

» GenK(1*¥) — sk, : This algorithm takes a security parameter x as
input and outputs a secret key sk,.

« EncD(x, sk,) — X : This algorithm takes a plaintext x and the secret
key sk, as input and outputs the ciphertext x.

« EncQ(QC, sk,) — OC : This algorithm takes a query coverage
QC = [b;, b,] and the secret key sk, as input and outputs the encrypted
range OC.

» Compare(X, Q\C) — {0,1} : Given the encrypted query range OC and
the encrypted value %, this algorithm outputs —1 if x < b; and outputs
1 if x > b,. Otherwise, it outputs 0.

The CIPE scheme allows edges to decide whether a value x falls
in a query range OC or not based on their ciphertexts. The reason for
the adoption of the CIPE scheme in the preliminary screening phase
is that it not only can compete with OPE schemes in the aspect of
search efficiency, but also can resist some attacks that OPE schemes
are vulnerable to. For instance, the CIPE scheme can resist inference
attacks by expanding the query matrix with noises [36].
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Fig. 3. System model. Secret keys are transmitted through secure channels.

2.5. Condensed RSA signature

Due to the property of multiplicative homomorphism, RSA signature
scheme can be used to combine many signatures into one condensed
signature [30]. Suppose that N’ is a product of two large random
primes and that exd = 1 mod ¢(N’), where e,d € Z’]‘V,. For the
standard RSA signature scheme [32], there are private key sk, = d and
public key pk, = (N’,e). We can compute the RSA signature ¢ = h(m)?
mod N’, where m is the message and k() is a hash function. Then we
can verify the signature ¢ by checking if ¢¢ = 2(m) mod N’.

The condensed signature is computed by modular multiplying the
original signatures. Suppose that m;,m,, ..., m, are k different messages,
whose original RSA signatures are o|,0,, ..., 0, respectively. We can
compute the condensed signature: o), = (H;‘:] 0;) mod N’. Then

we can verify the condensed signature o,; by checking if: of, =

(]'[f.‘:1 h(m;)) mod N’. The length of the condensed signature is equal
to that of the original signature. Thus, the condensed RSA signature
scheme can be used to reduce the communication cost.

3. Overview
3.1. System model

As illustrated in Fig. 3, our system model consists of the following
entities.

o LBS Provider. As the data owner, the LBS provider wishes to
outsource dataset D to the cloud to save money. To enable secure
and verifiable kNN queries on large-scale datasets, the LBS provider
performs secure data separation and adaptive encryption strategy in the
data preprocessing stage. For highly private data, it builds a Voronoi
diagram VD from D, encrypts VD with the Paillier cryptosystem, and
signs VD with the condensed RSA signature. The pretreated Voronoi
diagram VD and the secret key sk, are sent to cloud servers C, and C,,
respectively. For less sensitive data, the LBS provider builds an R-tree
index T from D, and encrypts T with the CIPE scheme. The encrypted
index 7, ® is uploaded to appropriate edge servers to speed up the query
process.

» Mobile Users. After obtaining authorization from the LBS provider,
the mobile user can issue kNN queries to retrieve POIs in her vicinity.
The mobile user located at position Q issues a search token TK =
(R/e?tg, k, E(Q)) to the nearby edge server, where @tg is a two-
dimensional range query encrypted under the CIPE scheme, and E(Q)
is her exact position encrypted under the Paillier cryptosystem. Once
she receives an encrypted search result SR and a verification object
VO from the cloud server, she recovers the plaintext result SR and
validates the correctness of SR with VO.

o Edge Servers. The edge servers possessed by the LBS provider
are deployed over geographically distributed areas. Each edge server
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Table 1

Summary of Notations.
D A spatial dataset that includes n points {P,,...,P,}
P, E(P;) A POI point with (x;,y,) and its encrypted coordinates
Q,E(Q) A query point with (x,,y,) and its encrypted coordinates
A (P,Q) The squared Euclidean distance between P, and Q
sk, The secret key for CIPE scheme
sk, pk, The secret/public key for Paillier cryptosystem
sk,, pk, The secret/public key for RSA signature
7, = Tr The encrypted/clear R-tree index built from D
YD, VD The pretreated and clear Voronoi diagram built from D
R/eEtQ,RectQ The encrypted/clear range query generated for Q
TK The search token consisted of (R/e\ctg,k, E(Q))
IR The immediate result in the preliminary screening phase
SR,SR The encrypted/clear result in the exact search phase

Yo The verification object consisted of (VO,,,, VO;,)

The RSA signature for the information about (P;, VN'(P,))

ay The condensed RSA signature for k signatures {c,...,0,}

is responsible for preliminarily processing the kNN queries of nearby
mobile users. Given the encrypted search token 7K = (R/e?tQ, k, E(Q)),
it evaluates R/eEtQ over the encrypted R-tree index 7, r to filter out the
immediate result 7R, and then sends 7R and a part of search token
(k, E(Q)) to the cloud server C,.

 Dual-Cloud Servers. Two cloud servers interact with each other
without colluding in the exact search phase. At the high level, C,
with the pretreated Voronoi diagram VD, the immediate result IR,
and the partial search token (k, E(Q)), and C, with the secret key
sk,, collaboratively execute a series of secure protocols to obtain an
encrypted search result SR. Finally, the verification object VO together
with SR are returned to the mobile user for verification.

3.2. Adversary model

In our threat model, the LBS provider and mobile users are fully
trusted. The cloud servers are called active attackers, that may not only
try to learn additional information outside their permissions, but also
return incorrect results for financial gain. In the dual-cloud model, two
cloud servers belonging to different CSPs are assumed not to collude
based on existing work [26-28]. Edge servers possessed by the LBS
provider are called passive attackers, which may accidentally leak data
due to external attacks. To ensure secure and verifiable kNN queries,
our security goals try to preserve the following:

« Data Privacy. The content of dataset D should be protected against
attackers.

« Index Privacy. The content of the search index should be protected
against attackers.

« Query Privacy. The contents of queries and results of mobile users
should be protected against attackers.

« Result Correctness. The mobile user is able to verify the correctness
of the search result from the aspects of authenticity and completeness
in an efficient way.

3.3. Notations and definitions

We write notations [x] and [x ~ y] to represent the set of integers in
{1,...,x}and {x, ..., y}, respectively. The cardinality of set .S is denoted
by |S|. The concatenation of two strings s; and s, is denoted by s,|s,.
The most relevant notations are shown in Table 1.

Let D = {P,,....P,} be a spatial dataset, where each data point
P; is represented as a spatial coordinate (x;,y;). The exact position of
each query point Q is also represented as a spatial coordinate (x,, y,).
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Let A (P;, Q) denote the squared Euclidean distance between P; and Q,
and let SR and SR denote the encrypted and plaintext search results,
respectively.

Definition 1 (Secure and Verifiable kNN Query). Given encrypted in-
dexes (? R 171\)) built from the dataset D, a search token 7 K generated
for the query point Q, and parameter k, the secure and verifiable kNN
query aims to find out the encrypted search result §7\€, s.t. (1) SR C D;
(2) & (P;,Q) <A (P;,Q), VP, € SRAVP; € D- SR while preserving
data privacy, index privacy, and query privacy.

From the system point of view, the workflow of SecVKQ is shown
in Fig. 4. In the initial phase, the LBS provider firstly runs the GenKey
algorithm to generate related secret keys (sk,, sk,, pk,) and sk,, which
will be sent to mobile users and the dual-cloud servers, respectively.
Given an R-tree 7z and a Voronoi diagram VD constructed from
the dataset D, the LBS provider then runs the EncTree algorithm to
generate the encrypted R-tree 7, r for edge servers, and runs the PreVD
algorithm to generate the pretreated Voronoi diagram YD for the dual-
cloud servers. In the search phase, given an exact query point Q and a
range Recty, the mobile user encrypts Q with homomorphic encryption,
and runs the EncRect algorithm to generate an encrypted range query
@tQ, and then sends the search token (R/eEtQ,k, E(Q) to the nearby
edge server. The edge server runs the SearchTree algorithm to generate
the immediate result 7R, then sends IR, and partial search token
(k, E(Q)) to the dual-cloud servers. The dual-cloud servers run the SEKS
protocol to generate the encrypted result SR and the verification object
V0O, and then send (§7\€, V0) to the mobile user. In the verify phase, the
mobile user firstly decrypts (SR, V0), then verifies the decrypted result
SR according to the verification object VO.

4. Preliminary screening phase
4.1. Main idea

To allow secure and efficient filtering, the LBS provider builds an
R-tree [37] index Ty from the dataset D, encrypts each tree node with
the CIPE.EncD algorithm, and uploads the encrypted R-tree index T, R
to edge servers. In order to retrieve the top-k nearest POIs, the mobile
user located at position Q = (x,, y,) generates a two-dimensional range
query Recty, encrypts each dimension with the CIPE.EncQ algorithm,
and sends the encrypted range query R/eag to the nearby edge server.
Once receiving a query request, the edge server evaluates the encrypted
query @tg over the encrypted index 7, r to obtain an intermediate
result 7R, with which the cloud servers can quickly find out the exact
search results.

R-tree structure. The basic idea of building an R-tree is to group
nearby POIs at the same level and iteratively include them to a minimal
bounding box in a higher level of the tree [37]. Specifically, each leaf
node v € Ty is defined by v = (ID,, P;), where ID, is the unique
identifier of node v in the tree 7, and P, € D is a distinct POI
associated with node v. In contrast, each non-leaf node u € 75 is defined
by u = (ID,,Rect,,childy, ..., child /), where ID, is node u’s identifier,
Rect, is the rectangle associated with node u, and child,, ..., child, are
the pointers to each of u’s children. For example, Fig. 5 illustrates an
R-tree with fanout f = 3 that is built from dataset D = {P,,..., P},
where the rectangles with solid lines denote non-leaf nodes of the index
tree 7x.

Two-dimensional range query. Suppose that the mobile user lo-
cated at Q = (x,,y,) wants to issue a range query with scope L. She
generates a rectangle Recty by taking Q as the center and L as the
edge length. For example, in Fig. 5, the rectangle with red dashed lines
denotes range query Q.

Secure range query on an encrypted R-tree. In clear text, the
search process is a recursive procedure upon the index tree 7. Given
a range query Recty, the edge server performs a detection starting
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Fig. 5. An example of the construction/searching of an R-tree.

Protocol 1 Preliminary Screening Phase

Calculation in LBS provider

1: Run the GenKey algorithm to generate a secret key SK

2: Construct an R-tree 7, from dataset D R

3: Run the EncTree algorithm to generate an encrypted R-tree 7,
Calculation in mobile user

4: Express the range query as a rectangle Rect

5: Run the EncRect algorithm to generate an encrypted query Rectg,

Calculation in edge server
6: Run the SearchTree algorithm to obtain the immediate result TR

from the root node of tree Tj. If Rect,, the rectangle associated with
node u, overlaps with Rectg, node u’s children nodes will be checked;
otherwise, the subtree rooted at node u will not be traversed. When
this traversal is over, all of the reached leaf nodes are returned. For
example, Fig. 5 illustrates the query process over a sample R-tree.

In order to apply the CIPE scheme, Rect, is represented by the coor-
dinates of its left-bottom point (x,, , y,,) and the coordinates of its right-
top point (x,,, y,,)- For each value in Rec/tu\, the CIPE.EncD algorithm is
run to generate an encrypted rectangle Rect, = ((X,,, %, ) (X, 9,,))- Let
(Xg,Yg,) and (X, Yg) denote the coordinates of the left-bottom point
and right-top point of Recty. In contrast, Rect,, is represented by the
query coverage on the x-coordinate OC, = (x,,x,,) and the query
coverage on the y-coordinate QC,, = (¥g,»¥q,)- For each query coverage
in Recty, the CIPE.EncQ ,a\lgorithm is run to generate an encrypted
rectangle Recty = (QC,,QC,). Recty does not overlap with Rect,, if
either of the following cases happen:

- Case 1: CIPE.Compare(s, .OC,) = 1

« Case 2: CIPE.Compare(%,,. OC,) = —1

« Case 3: CIPE.Compare(f,;,Q/\Cy) =1

+ Case 4: CIPE.Compare(J;,,.OC,) = —1

4.2. Details of the working process

Let F : {0,1}* x {0,1}* — {0,1}* be a pseudo-random function
(PRF). As shown in Protocol 1, the preliminary screening phase consists
of the following algorithms:

» GenKey(1¥,D) — SK : Given a security parameter «, the LBS
provider runs the CIPE.GenK algorithm to generate sk., and chooses
a random string k, € {0,1}* as the key of F. The secret key is in the
form of SK = (sk, k).

 EncTree(Tg, SK) — ﬁ : Given an R-tree Ty built from the dataset
D, an encrypted tree 7, r is generated as follows:

1. For each non-leaf node u € 73, the LBS provider encrypts
the correlative rectangle Rect, = (Ceuys Yuy)s s Yy ) with /gle
CIPE.EncD algorithm, and outputs an encrypted rectangle Rect,
= (Ruy+Fu)» Gy Fiy)-

2. For each leaf node v of Ty, the LBS provider generates a label
L;=Fy, (xly) for the correlative POL.

* EncRect(Rectg, SK) — R/e?tQ : Given a two-dimensional range
query Rectg = (QC,,QC,), the mobile user encrypts each query cov-
erage with algorithm CIPE.EncQ and generates an encrypted query
R/e?tg = (é\CX,é\Cy).

. SearchTree(?R,R/e?tQ) — IR : For each non-leaf node u € ?R, the
edge server tests whether there is an overlapping between R/e?tg and
R/eztu. If so, node u’s children nodes will be checked; otherwise, the
subtree rooted at node u will not be traversed. For each reached leaf
node, the edge server puts the label of a related POI into TR.

Remark 1. Edge servers are deployed across a large area, each re-
sponsible for processing queries of nearby mobile users. Therefore, it
is unnecessary for edge servers to store a large R-tree index built from
the entire dataset. In order to reduce the storage space incurred on
edge servers, the LBS provider can first divide the dataset D and then
build an R-tree index from each partition. In this way, the edge server
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Algorithm 2 Pretreatment of Voronoi Diagram (PreVD)

Protocol 3 Secure Nearest Neighbor

Require: The Voronoi diagram VD, the key k., the maximal number
of Voronoi neighbors M
Ensure: An encrypted and signed Voronoi diagram YD
1: Initialize VD to an empty table
2: for each P, € VD do
Initialize r;, EncNL; and EncNP; to empty lists
4 L; < ka(xilyi); ¢ < |VN(P,)|
5. if ¢; < M then
6: Pad VN (P;) with M — ¢; dummy data points
7:  for each P; € VN (P,) do
8.
9

L; < ka(leyj)
: Append E(L;) to EncNL; and EP)) to EncNP;
10:  Generate a signature o; for P; and VN (P;)
11:  r; « (E(P;),EncNL;,EncNP;, E(c;), 0;)
12 VDIL] <,

is able to filter results more rapidly by using a compact search index.
Note that data points of the search result may be distributed among
different edge servers. To avoid such a scenario, the R-tree index is
constructed based on the data partitions located in a primary edge
server and several adjacent edge servers. Even then, the storage space
and search efficiency can be improved because the data scale stored on
each edge server is much smaller than the entire dataset.

5. The exact search and verification phase

To allow cloud servers to perform an exact kNN search in a secure
and verifiable way, the LBS provider preprocesses the dataset before
outsourcing. Once receiving preliminary results and search tokens from
edge servers, the dual-cloud servers collaborate to perform a series of
secure protocols to find out exact search results from the pretreated
dataset, and run the verification protocol with mobile users to validate
results.

5.1. Data pre-processing

For enhanced privacy, Paillier cryptosystem is employed to encrypt
the coordinates of each data point P; and query point Q. For simplicity,
the encryption of coordinates (x;, y;) and (x,, ,) is expressed as E(P;)
and E(Q), respectively. Furthermore, we assume that the LBS provider’s
public key pk, is publicly known, and thus will be omitted from the
input of algorithms/protocols for briefness.

The LBS provider first constructs a Voronoi diagram VD = (P,
VN (P))iey from the dataset D, and then runs Algorithm 2 to generate
a pretreated Voronoi diagram yD. Finally, it sends YD and the secret
key sk, to cloud servers C, and C,, respectively. In Algorithm 2, YD is
constructed as a search table indexed by the labels of data points. Let k
be the key of PRF F, and let M = max{|VN'(P))|, ..., |[VN(P,)|} denote
the maximal number of Voronoi neighbors in VD (M is a small value
even in the large-scale dataset). Algorithm 2 works in the following
way.

For each data point P; € VD, the LBS provider first calculates
its label £; and then encrypts its coordinates into E(P;) and its real
number of Voronoi neighbors into E(c;). Then, for each Voronoi neigh-
bor P; of P;, the LBS provider calculates P;’s label and appends the
encrypted label E(L;) and the encrypted position E(P;) to the end of
list EncNL; and list EncNP;, respectively. For security, the LBS provider
pads VN (P;) with dummy data points to hide the real number of
Voronoi neighbors. It is worth noticing that the dummy data points
are randomly chosen from the dataset and will not affect the accuracy
of kNN queries. Finally, the LBS provider generates an RSA signa-
ture o; for the information about (P, VN'(P,)), and puts the entry

Require: C, has a set of encrypted data points S= {E(P)),...., E(P)}
and an encrypted query point E(Q); C, has the secret key sk,
Ensure: C, obtains an encrypted point E(P;«)
Collaboration in C; and C,
1: C; sets E(Pyx) « E(Py)
2: for each encrypted data point E(P;) € S do
3: C, and C, run the SSED protocol and C; obtains E(a (P;«,Q))
and E(a (P;,Q))
4. C; and C, run the SC protocol to compare E(a (P-,Q)) and
E(a (P, Q)
5. if E(a (P)-,Q)) > E(a (P;,Q)) then
C, sets E(Pyx) « E(P))

N

(E(P;), EncNL;, EncNP;, E(c;), 5;) at 1/75[5,.]. On the basis of the Voronoi
diagram shown in Fig. 2, the result of data pre-processing is shown in
Fig. 6. For instance, £, stores the label that is calculated by coordinates
of data point P,. E(P,) stores the encrypted point coordinates. EncNL,
and EncNP, are the encrypted labels and the encrypted data coordinates
of P,’s Voronoi neighbors, respectively. The information of dummy
data points is highlighted in blue in the figure. The real Voronoi
neighbors of P, are {P,,P;,P;,Ps}, and dummy neighbors of P, are
{P,,Ps}. E(c;) stores the real number of P,’s Voronoi neighbors. At
last, o, is RSA signature for the information about (P, VN'(P))).

5.2. Secure protocols in exact kNN search

In the exact search phase, the dual-cloud servers, C; and C,, collab-
orate to run the following protocols:

Secure Nearest Neighbor (SNN). This protocol allows cloud servers
to securely compute the nearest neighbor of an encrypted query point
from a set of encrypted data points. Let S = {E(Py), ..., E(P,)} be the
encrypted form of clear set S = {P,,...,P,}. Specifically, C, takes a
set of encrypted data points S and an encrypted query point E(Q) as
input. C, takes the secret key sk, as input. At the end of this protocol,
C, obtains an encrypted point E(P;‘) s.t. & (PF,Q) <a (P;,Q) where
PieSand P, €S-P|.

Protocol 3 describes the details of SSN. Specifically, C, uses E(P})
to denote the nearest neighbor of the encrypted query point E(Q). For
each encrypted point E(P;) € S, C, and C, run the SSED protocol to
obtain the encrypted distance E(a (P;,Q)) and then they run the SC
protocol to set E(P}) to the encrypted point with minimal distance from
EQ).

Secure Set Difference (SSD). This protocol allows cloud servers
to securely perform set difference on two encrypted sets. Let §1 =
{E(x)),..., E(xy)} and §2 ={E®,),..., E(yp)} be the encrypted forms
of clear sets S; = {xy,...,xy} and S, = {y,...,yr}, respectively.
Initially, C, takes two encrypted sets, S, and S,, as input, and C,
takes the secret key sk, as input. At last, C; obtains an encrypted set
S = {EG), ... E(xp#) )y es,—s,» Where the plaintext of each element
belongs to S but not to S,.

Protocol 4 describes the details of SSD. Let = and z~! denote a
pseudo-random permutation and an inverse permutation, respectively.
For each element E(x;) € §], C, checks whether there exists an
element E(y;) € §2, such that x; = y;. Due to the semantic security
of Paillier cryptosystem, C; cannot determine the equality of two clear
values based on their ciphertexts. Therefore, C, requests C, to perform
decryption. To protect data privacy, C; sends 1, ; « E(r;; X (x; — y;)),
instead of two encrypted sets, to C,. Therefore, if x; = y;, C, obtains a
value of zero after decryption, otherwise, C, knows nothing about the
data content.

Secure Exact kNN Search (SEKS). This protocol allows cloud
servers to securely compute the top-k nearest encrypted data points of
an encrypted query point. Specifically, C, takes the immediate result
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i L; E(P;) EncNL; EncNP; E(c;) o;

1 | F(170]150) | E(170[150) | E(L;)..E(Ls) | E(P) .. E(Ps) E(4) h(170150]...|400|220)¥(mod N)
2 | F(190]300) | E(190|300) E(Ly) .. E(Le) E(Py) ... E(Ps) E@3) h(190/300]...|300|80)¢(mod N
3 | F(280]200) | E(280]200) E(Ly) - E(L,) E(Py) .. E(P7) E(6) h(280200]...|250|140)¢(mod N
4 | F(350|270) | E(350[270) | E(L;)..E(Ls) | E(P) .. E(Ps) E@3) h(150]270]...|200/100)¥(mod N)
5 | F(400|220) | E(400[220) | E(Ls)..E(L) | E(Ps)..E(P) E@B3) h(400(220]...|170]150)%(mod N')
6 | F(300/80) E(300/80) E(L3) .. E(L2) E(P;) ... E(P,) E(4) h(300180...]190|300)4(mod N)
7 | F(250/140) | E(250]140) | E(Ly)..E(L,) | E(Py)..E(P.) E(4) h(2501140]...1190|300)¥(mod N)
8 | F(200/100) | E(200|100) | E()..E(L,) | E(Py)..E(P,) E@B3) h(200]100]...|190|300)¥(mod N’)

Fig. 6. Data Pre-processing example.

Protocol 4 Secure Set Difference.

Protocol 5 Secure Exact kNN Search.

Require: C, has two sets of encrypted values 3‘1 ={E(x)),..., E(xy)}
and §2 ={E(y,),.... E(yp)}; C, has the secret key sk,
Ensure: C, obtains an encrypted difference set kY
Calculation in C,
1: Initialize T to an empty table
2: for the i-th element E(x,) € S, do
3: Initialize t to an empty list
for all E(y;) € §2 in random order do
Generate a random number 7, ;
ti,j « (E(x;) % E(_Vj)_l)r"j
{equivalent to 7, ; < E(r; ; X (x; — y;))}
Append #;; to t
Tz(i)] « t
10: Send T to C,

4
5
6:
7
8
9

Calculation in C,
11: Initialize V' to an empty set
12: for i € [N] do
13:  Parse TJ[i] as (t,v,l, ,t,-,T)
14: if 3t; €THIAD(@; ;) =0 then
15: Add i into set V
16: Send set V to C,;

Calculation in C,
17: for each element i in V do
18:  j« 7 l()
19:  Remove the j-th element E(x;) from §1
20: & < 5,

IR, the encrypted query point E(Q), parameter k, and the encrypted
Voronoi diagram VD as input. C, takes the secret key sk, as input. At
the end of this protocol, C, obtains the encrypted search result SR =
(LT EP)), ... (L E(PY)), s.t. (1) SR C D; (2) d(P},Q) < d(P;,Q),
VP € SRAVP; €D - SR.

As shown in Protocol 5, SEKS, as the main protocol, invokes the SNN
and SSD protocols as sub-routines as follows. For all labels £; € IR, C,
puts the corresponding encrypted data point E(P;) into set C. If the size
of € is equal or greater than k, C, and C, run the SNN protocol k times
to obtain the top-k nearest encrypted data points {E(P)), ..., E(P))}.
Otherwise, C,; and C, collaborate to find 1NN, ..., kNN in order
based on PD. For the correctness of result, the SSD protocol is used to
remove repeated neighbors and avoid repeated comparisons with the
data points already in SR.

For example, as shown in Fig. 5, after the preliminary screen-
ing phase, the edge server returns the intermediate result IR =
{L3,L6,L9,L4,L5}. If parameter k = 3, the dual-cloud servers run

Require: C, has the intermediate result TR, the encrypted query point
E(Q), parameter k, and the encrypted Voronoi diagram T)T); C, has
the secret key sk,

Ensure: C, obtains the encrypted search result SR

Collaboration in C; and C,
1: C, initializes @, §7\€, and 7 to empty sets
2: for each label £; € IR do
3: C;, locates entry 1/?5[5,.] to obtain
EncNP;, E(c;), 0;) and appends E(P;) to ¢
: if |C] > k then
C, with input (CA, E(Q)) and C, with input sk, run the SNN
protocol k times, and C,; obtains { E(P;«), ..., E(P;)}
C, puts (£;-, E(P))*, into SR
else
8: C,; with input (CA, E(Q)) and C, with input sk, run the SNN
protocol, and C, obtains E(P;«)
9. C, puts (£, E(P,.)) into SR
10: C,; puts E(L;:) into ¥ and sets C to an empty set
11: while |SR| <k do

(E(P;), EncNL,;,

[

N

12: C, locates ﬁ[ﬁl*] to obtain (E(Py+),
EncNL;«,EncNP ., E(c+), 61+)
13: C, with input (EncNL,., V) and C, with input sk, run the SSD

protocol, and C, obtains the encrypted difference set EncNL),

14: for E(P)) in EncNP,. A E(£;) € EncNL], do

15: C, puts E(P;) into € and E(L;) into V

16: C, with input (6, E(Q)) and C, with input sk, run the SNN
protocol, C, obtains E(P;-) and removes it from the set ¢

17: C, obtains L. by asking C, to perform decryption

18: C, puts (£+, E(P;+)) into SR

the SNN protocol for 3 times and C, obtains the search result SR =
{(L4, E(Py), (L5, E(Ps)), (L3, E(P3))}. If parameter k = 6, the dual-
cloud servers first run the SNN protocol to obtain the top-1 nearest
neighbor E(P,). After putting E(L,) into set V, C, locates 1/75[£4]
and puts {E(P,), E(P;), E(Ps)} and {E(L,), E(L3), E(Ls5)} into ¢ and
V, respectively. Next, C, and C, run the SSD protocol to remove the
repeated encrypted labels from EncNL, and then run the SNN protocol
to get the top-2 nearest neighbor E(Ps). Then, C, asks C, to decrypt
E(L5), and the dual-cloud servers perform in the same way to find out
the top-i nearest neighbor, for i =3, ...,6.

Remark 2. The data packing/unpacking technique [38] allows the
LBS provider/cloud servers to pack multiple small values x, ..., x, into
one large value X before encryption and unpack X into x,, ..., x, after
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decryption. By using this technique, the computational and commu-
nication overheads incurred by Paillier cryptosystem can be largely
reduced.

Remark 3. In order to reduce the computational costs on mobile users,
the dual-cloud servers may participate in the decryption process as
follows: C, blin/(_i\s ,§7\€ with a set of random numbers R and sends the
blinded result SR and R  to ,Cz and the mobile user, respectively. C,
decrypts the elements in SR with sk, and returns SR’ to the mobile
user. Therefore, the mobile user with SR’ and R can quickly recover
the plaintexts without performing Paillier decryption.

5.3. Verification of search results

To allow mobile users to validate search results, the cloud servers
generate a ver/if\ication object VO = (VO,;,,V0O,,,) as follows. For
each L(P;) € SR, C, puts the RSA signature o; into VOy;, and puts
(EncNP;, E(c;)) into VO,,,. Specifically, C; and C, may participate
in the process as described in Remark 3 to partially decrypt VO,,,.
Furthermore, VO;, can be compressed into a single signature o, ; for
batch verification due to the aggregation property of a condensed RSA
signature. In our experiments, the size of VO, is constant (512bits),
thus the communication overhead is largely reduced.

Once receiving the search result SR and verification object YO =
(VOyi4, VOy,,), the mobile user first decrypts SR to obtain the plain-
text result SR, and then recovers the contents in VO,,,. SR can be
validated from the following aspects:

 Authenticity. The mobile user aggregates the information about
P; and VN (P,) for P, € SR, and then verifies the correctness of
VO,;, with this aggregated information. If VO,;, passes the test, she
determines that all of the data points returned are indeed from the
dataset D.

- Completeness. Suppose that 7} denotes the top-i nearest result in
SR for i € [k]. As shown in Section 2, the mobile user first reconstructs
VC(PI*), based on VN (Pl*) and P;*, and then checks whether Q locates
in YC(P}) or not. If so, she confirms that Pl is the nearest neighbor.
Otherwise, she determines that SR is incomplete and terminates the
verification process. If P{* passes the test, for i =2, ..., k, she calculates
the distance between Q and all points in VAN(P/) U - U VN'(P}) and
tests whether P is the top-i nearest neighbor. If so, she confirms the
correctness of the top-i result. Otherwise, she determines that SR is
incomplete and terminates the verification process.

For example, the search result of a 3NN query is SR = {P,, Ps, P3}
in Fig. 2. The mobile user can quickly recover the plaintexts of the
search result SR and the verification object V© according to Remark 3.
Specifically, VO is composed of two parts: VO, = o, and VO,,, =
{VN(Py), ¢y, VN (Ps), cs, VN (P3), c3}, which can be used to verify the
authenticity and completeness of SR, respectively. The mobile user
first eliminates dummy data points in VO,,,. In terms of authenticity,
V0O, contains the condensed RSA signature signed ¢, ;, with which the
mobile user can confirm that the data points in SR are from dataset
D. Specifically, the mobile user verifies the condensed signature o
by checking if: aik = (Hf.;l AP VN (P;))) mod N’, where P, € SR
and VN(P;) € VO,,. In terms of completeness, The mobile user
reconstructs VC(P,) based on VN (P,) and Py, then determines that Q is
located in VC(P,). According to Property 1 in Section 2, the mobile user
confirms that the nearest neighbor of Q is P,. According to Property 2
in Section 2, Ps should belong to VN'(P,), and P; should belong to
VYN (P,) U VN (Ps). Therefore, for each data point P, € VN (P,), the
mobile user calculates the distance between P; and Q and confirms
that P5 is the second nearest neighbor of Q. Similarly, the mobile user
confirms that P; is the third nearest neighbor of Q by computing the
distance between Q and each data point in VN (P,) U VN (Ps).
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6. Complexity and security analysis
6.1. Computational complexity

To show the efficiency of our SecVKQ framework, we will theoret-
ically analyze the computational complexity of the two-phase search
process and compare it with existing secure kNN search schemes. For
the sake of illustration, we only consider the operations related to
data encryption/decryption. Let enc; and dec; denote the encryption
and decryption operations in the light-weighted CIPE scheme, and let
enc, and dec, denote the encryption and decryption operations in the
expensive Paillier cryptosystem, respectively.

In the data pre-processing stage, the LBS provider builds an R-tree
index Ty of fanout 2 from the dataset D and encrypts 7 with the
CIPE scheme. Furthermore, it constructs a Voronoi diagram VD from
D, and encrypts VD with the Paillier cryptosystem. The computational
complexity is O(n)enc; + O(n x M)enc,, where n is the size of D and M
is the maximal number of Voronoi neighbors in VD.

To retrieve the top-k nearest POIs, the mobile user generates a
search token 7K = (R/eEtQ, k, E(Q)) to the nearby edge server, where
R/e?tg is the encrypted two-dimensional range query under the CIPE
scheme, and E(Q) is the encrypted query point under the Paillier
cryptosystem. Once receiving the blinded search result SR’ and a set of
random numbers R from the cloud server, the mobile user can recover
the plaintext result without performing Paillier decryption. Therefore,
the computational complexity is O(1)(enc, + enc,).

In the preliminary screening phase, the edge server evaluates en-
crypted range query R/e\ctQ over the encrypted R-tree index 7, ® tO
find out the intermediate result Z7R. Therefore, the computational
complexity on the mobile user is O(log n)dec;.

The case in the exact search phase is relatively complicated, since
the dual-cloud servers need to run a series of secure protocols. As
described in [26,35], the preliminary SSED and SC protocols need
a constant number of Paillier encryption and decryption operations.
The sub-protocol SNN needs to run the SSED and SC protocols for
|S] times to find out the query point’s nearest neighbor from a set
of encrypted data points S. The sub-protocol SSD needs to perform
Paillier decryption operations for |§1| X |§2| times to compute the set
difference on two encrypted sets, S; and S,. Note that by using the data
packing/unpacking technique [38], the time of decryption operations
can be reduced to |S,|. If the size of IR is larger than k, the SEKS
protocol needs to run the SSED protocol I times and the SNN protocol
k times, where I is the size of the intermediate result. Therefore, the
search complexity is O(k X I)(enc,+dec,). Otherwise, the SEKS protocol
needs to run the SSD and SNN protocols for k times based on the
pretreated Voronoi diagram VD. Therefore, the search complexity is
O +k*xM )enc, +dec,), where M is the maximal number of Voronoi
neighbors. The comparison results between SecVKQ and existing secure
kNN search schemes are summarized in Table 2. Note that the work
in [26,27] cannot support result verification and thus consumes less
overhead in the data preprocessing stage.

6.2. Security analysis

The security of the preliminary screening phase is based on the
CIPE scheme, which has been proven to be secure in the known-
plaintext model [36]. Therefore, we mainly analyze the exact search
phase through proving the security of the proposed SNN, SSD, and
SEKS protocols. Following the formal definition of multi-party compu-
tation introduced in [28,38], we adopt the framework of simulation
paradigm [39] to analyze the security of the proposed protocols.

Theorem 1 (Composition Theorem [39]). Given a protocol €2 consisting of
multiple sub-protocols, if all the sub-protocols are secure and all the inter-
mediate results are random or pseudo-random, the protocol €2 is considered
secure.
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Table 2
Complexity Analysis.

Journal of Systems Architecture 120 (2021) 102300

LBS Provider Mobile User

Edge Cloud

SecVKQ O(n)enc; + O(n x M)enc, O(1)(enc, + enc,)
Ref. [28] O(m* x g +nx M)enc, O()enc,
Ref. [27] O(n)enc, O(enc,
Ref. [26] O(n)enc, O(l)enc,

O(logn)dec,
- O(k X (n+ M))enc, + O(k X (\/Z + M))dec,
- O(y/nx (I + kx I X logm))(enc, + dec,)

O(I + k» X M)(enc, + dec,)

- OmXx (I +kxIxlog n))(encp + dec,,)

Notations: n denotes the size of dataset D, k denotes the search parameter for kNN search, / denotes the size of immediate result,
and M denotes the maximal number of Voronoi neighbors. m denotes the number of grids and g denotes the maximal number of grid
points in [28]. / denotes the domain size (in bits) of the squared Euclidean distance in [26,27].

Theorem 2. The SNN protocol is secure if the SSED and SC protocols are
secure.

Proof. The SNN protocol is based on the SSED and SC protocols, the
security of which has been proven in previous work [26,35]. Since all
of intermediate results are random, the SNN protocol is secure based
on Theorem 1. ]

To analyze protocols SSD and SEKS, a simulator is constructed
to simulate the actual execution view. According to the simulation
paradigm, a protocol is considered to be secure if a probabilistic
polynomial-time (PPT) adversary cannot distinguish between the real
view and the simulated view.

Theorem 3. The SSD protocol is secure for all efficient adversaries Adv, if
there exists a simulator Sim and the probability Pr(Real§$;,) — Pr(Sim4%" )
is negligible.

Proof. The real view RealA ssp and simulated view Slm‘;‘;‘b are defined
as follows:

. RealA 'p: C; has two sets of encrypted values S, = {E(x)), ..
E(xpy)t, Sz = {E®),..-, E(yr)} and C, has the secret key sk,. In the
SSD protocol, C, first uses the additive homomorphism property of
Paillier cryptosystem to compute an obfuscated difference 7, ; between
each encrypted data E(x;) in S1 and E(y;) in Sz. Next, all dlfferences
are permuted before being sent to C,, which decrypts the differences
and puts the permutated indexes corresponding to the value of zero
into the intermediate result. At last, C,; outputs the final result 8 =
{EGp)s o EGp) beesy 8, -

. Sim‘;‘;vu' The simulator Sim receives 5’, and then generates two
sets of random values xl,...,x’N_t and y’l,...,y’T_N+t where x,’. <0
and yj < O0fori € [N -1 and j € [T — N + 1], respectively.
This guarantees that X,/' and y;. are outside the set {x;«,...,x;«}. Then,
Sim encrypts x/,...,x%_, twice and y,....¥}_ ~4 Once with Pail-
lier cryptosystem. Next, Sim constructs the simulated sets by setting
S) = {EG). o EGip ) Ey (X)), By (), and S, = (EBy()), ..
Ey(xy_)), E(y’l), e E(y’T_NH)}, where E|(x]) and Ey(x)) denote the first
and second encryption operations, respectively. Due to the semantic
security of Paillier cryptosystem, the c1phertext of E,(x]) looks different
from that of E,(x]). After shufﬂmg S, and S,, Sim executes the SSD
protocol and outputs the results 5.

Intuitively, the simulated view is computationally indistinguishable
from the actual execution view because their outputs are identical.
Therefore, the SSD protocol is secure. [

Theorem 4. The SEKS protocol is secure for all efficient adversaries
: ; : . - _1Ad

Adv,. lj; girere exlsts Aa.sunulator Sim and the probability Pr(Real ¢, ) —

Pr(Sim gy ¢) is negligible.

Proof. Similarly, we define the real view RedlA SExs and the simulated
view SimA%VK  as follows.

* Real S'Ijs s+ Cy has the intermediate result IR, the encrypted query
point E(Q), parameter k, and the encrypted Voronoi diagram YD, and
C, has the secret key sk,. During the SEKS protocol, C, first utilizes

the SSED protocol to compute the distance between E(Q) and each
encrypted point whose label are in the intermediate result ZR. If the
size of TR is not less than k, C; and C, run the SNN protocol k times to
get the search result. Otherwise, based on encrypted Voronoi diagram
VD, C, and C, run the SNN and SSD protocols to find INN, ..., kNN
in order. At last, C, outputs the final result §7\€

. Srm?‘}vk s: The simulator Sim receives SR = {(E*,E(Pf)),...,
(L3, E(P))}. Then, Sim generates a set of encrypted points S =
{E(P)), ..., E(P)_,)} in the following way: For i € [n— k], it generates a
random point 7;, computes its label as £;, encrypts its coordinates into
E(P,), and powers E(P,) by a large random number r; to obtain E(P/).
This guarantees that all points in S are farther from the encrypted
query point E(Q) compared to any point in SR. Next, Sim constructs
a simulated dataset E(D’) = {EP)), . E(P*) E(P/) E(P’ _)}, and
generates the simulated Voronoi dlagram YD as follows For i € [k], it
chooses random c¢; points from E(D') to be E(P})’s Voronoi neighbors
under the condition that P} € VP(PI*) U ...VP(PI.*_I), and then it
sets VD[L}] to (E(P?),EncNL«,EncNP;., E(c;),0;). For j € [n — kI, it
chooses ¢; pomts from E(D’') to be E(P’ )’s Voronoi neighbors and
then sets VD[£ ] to (E(P) EncNL; EncNPI,E(c]), ;). With the same
intermediate result IR, same encrypted query point E(Q), parameter
k, and simulated Voronoi diagram VD, Sim executes the SEKS protocol
and outputs the results SR.

All sub-protocols have been proven to be secure. Given the identical
outputs, no PPT adversary can distinguish Sun?‘}vk ¢ from RCdl?%vK s
Hence, the SEKS protocol is secure. [

7. Evaluation

This section will evaluate the performance of our SecVKQ frame-
work in terms of computational and communication costs. The experi-
ment results related to the CIPE scheme are omitted since its execution
time is negligible compared to the Paillier cryptosystem. For example,
the CIPE scheme requires less than 1 s to find preliminary results
from 1 million data points. To validate the effectiveness of SecVKQ in
practice, we conduct experiments on two real datasets, and compare
SecVKQ to the state-of-the-art work, SVKNN, which 